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Abstract

the only mediator detectable in the CSF of patients.

causes of the pathology still needs to be addressed.
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Background: Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease leading to the death of
affected individuals within years. The involvement of inflammation in the pathogenesis of neurodegenerative
diseases, including ALS, is increasingly recognized but still not well understood. The aim of this study is to evaluate
the levels of inflammation-related IL-1 family cytokines (IL-1(3, IL-18, IL-33, IL-37) and their endogenous inhibitors
(IL-TRa, sIL-1R2, IL-18BP, sIL-1R4) in patients with sporadic ALS (SALS),

Methods: Sera were collected from 144 patients (125 patients were characterized by disease form, duration, and
disability, using the revised ALS functional rating scale (ALSFRS-R) and from 40 matched controls. Cerebrospinal
fluid (CSF) was collected from 54 patients with sALS and 65 patients with other non-infectious non-oncogenic
diseases as controls. Cytokines and inhibitors were measured by commercial ELISA.

Results: Among the IL-1 family cytokines tested total IL-18, its endogenous inhibitor IL-18BP, and the active form of
the cytokine (free IL-18) were significantly higher in the sALS sera than in controls. No correlation between these
soluble mediators and different clinical forms of sALS or the clinical setting of the disease was found. IL-18BP was

Conclusions: Among the IL-1 family cytokines, only IL-18 correlates with this disease and may therefore have a
pathological role in sALS. The increase of total IL-18 suggests the activation of IL-18-cleaving inflammasome.
Whether IL-18 upregulation in circulation of SALS patients is a consequence of inflammation or one of the

Background
Amyotrophic lateral sclerosis (ALS) is a fatal neuromus-
cular disorder characterized by the progressive loss of
anterior-lateral horn spinal cord motoneurons, leading
to progressive muscular weakness and eventual death of
affected individuals [1]. Sporadic ALS (sALS) is the primary
form of the disease, affecting 95% of ALS patients, while
the remaining 5% of cases have a familial form of the
disease.

Several studies have suggested that immune activation
and inflammatory mechanisms may have an active role
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in ALS pathogenesis [2]. It has been reported that pa-
tients with sALS exhibit an anomalous monocyte pheno-
type, with increased expression of CD16 and HLA-class
11, which is directly related to the rate of sALS disease
progression [3]. Infiltrating macrophages and T cells
have been found in the central nervous system (CNS) in
human ALS, and immunoglobulin G (IgG) and comple-
ment deposition are also evident [2,4-6]. Parallel to cell
infiltration, increased levels of pro-inflammatory cyto-
kines such as CCL2 [7] and IL-6 have been reported in
both the cerebrospinal fluid (CSF) [8] and sera [9], and
increased levels of TNF-a were detected in the blood of
these patients [10].

An involvement of IL-1 family cytokines in the path-
ology of ALS has been suggested by the finding of acti-
vated caspase-1 and increased IL-1f both in ALS mouse
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models and in patients [11-13]. The IL-1 family includes
eight cytokines with inflammatory or anti-inflammatory
activity (IL-1a, IL-1pB, IL-18, IL-33, IL-36q, IL-36(3, IL-36y,
IL-37), and three receptor antagonists (IL-1Ra, IL-36Ra,
I1L.-38) [14,15]. Members of the IL-1 receptor (IL-1R) fam-
ily include four receptor chains and two accessory chains
that form four signalling complexes, two orphan recep-
tors, two decoy receptors (IL-1R2, IL-18BP), and two
negative regulators [16].

IL-1B and IL-18 are synthesized as biologically inactive
precursors and subsequently cleaved by caspase-1 to give rise
to mature active cytokines [17]. Also the anti-inflammatory
cytokine IL-37 is synthesized as a long protein, which needs
caspase-1 both for its nuclear translocation (where it may act
as a DNA-binding protein) and for its cleavage and extracel-
lular release as an IL-1-like cytokine [18]. IL-1[ exerts its
potent inflammatory effect by binding to IL-1R1, and its
activity is inhibited by the IL-1R antagonist IL-1Ra, which
competes with IL-1p for IL-1R1 binding. IL-1R2 functions as
a decoy receptor for IL-1pB, capturing the cytokine and pre-
venting its interaction with IL-1R1 [16,19].

IL-18 is cytokine strongly involved in type 1 inflamma-
tion, as it induces activation of Th1 cells and production
of IEN-y by Thl and NK cells [20]. IL-18 is produced by
many cell types, including leukocytes, epithelial and
endothelial cells, and various cells of the adipose tissue.
The inflammation-related effects of IL-18 may vary de-
pending on the microenvironment, and there are reports
suggesting that IL-18 could also be involved in type 2 in-
flammation and Th2 cell activation [21]. Beside inflam-
matory effects, IL-18 is also involved in regulating energy
homeostasis (by controlling food intake, energy expend-
iture and respiratory exchange) [22,23] and in maintaining
the functional integrity of mucosal barrier functions [24].
IL-18 is regulated by the IL-18 binding protein (IL-18BP),
a soluble molecule that binds mature IL-18 with high
affinity and prevents its interaction with cell surface
receptors. Only the fraction of IL-18 that is not bound to
IL-18BP is actually free to interact with the membrane
receptors on target cells/organs and is biologically active.

Also the anti-inflammatory cytokine IL-37, in its caspase-
1-dependent extracellular short form, binds to IL-18 recep-
tors and is inhibited by IL-18BP [14,25]. IL-33 is another
member of IL-1 family highly homologous to IL-18 [26].
IL-33 is synthesized as a pro-protein that acts as nuclear
factor regulating transcription. Upon inflammasome- and
caspase-1-independent cleavage, mature IL-33 is exported
extracellularly and acts as a cytokine by binding to its
receptor IL-1R4 (previously known as T1/ST2), thereby
recruiting and activating leukocytes and inducing Th2-
associated cytokines [27]. The soluble form of the receptor,
sIL-1R4, is a natural inhibitor of IL-33.

In order to investigate if the IL-1 network and inflam-
masome hyperactivation have a pathogenic role in sALS
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by promoting neuroinflammation and contributing to
disease progression, we analyzed the levels of IL-1 family
molecules (IL-1f, IL-18, IL-33, IL-37) and their en-
dogenous inhibitors (IL-1Ra, sIL-1R2, IL-18BP, sIL-1R4)
in serum and CSF from sALS patients.

Methods

Subjects

A total of 144 ALS patients were included in the study.
Clinical data at the time of blood and CSF drawing were
available for 125 patients (Table 1). CSF was collected in
54 patients out of 144.

To evaluate overall patient functional status, the Re-
vised ALS Functional Rating Scale (ALSFRS-R, scored
0-48) was used [28]. All patients had ALS with a range
of ALSFRS-R scores of between 35 and 48. Disease on-
set had occurred in patients between 1 and 96 months
before the time of sampling. A total of 40 healthy serum
donors (30 females and 10 males, mean age 51+ 19
years), and 65 CSF donors (37 females and 28 males,
mean age 56+ 20 years) with different kinds of non-
infectious non-inflammatory pathologies were used as
controls. Written informed consent was obtained from
all subjects. The study was approved by the local Ethics
Committees.

Cytokine assay in serum and CSF

Cytokine levels in serum and CSF were measured by
ELISA with commercially available assays. The ELISA
kit for human IL-18 was obtained from MBL (Woburn,
Massachusetts, United States), kits for hIL-18BPa, hIL-
1B, hIL-1Ra, hsIL-1R2, hIL-33, and hsIL-1R4 were pur-
chased from R&D Systems Inc. (Minneapolis, New
Mexico, United States), while the ELISA kit for hIL-37
was provided by AdipoGen, Inc. (Seoul, South Korea).
The IL-18 kit from MBL could detect total IL-18 (either

Table 1 Demographic and clinical characteristics of sALS
patients

SALS patients (total) 125

Sex (F/M) 69/56

Age (mean and range) 63.28 (32-82)
Disease duration (in months; mean and range) 11.32 (1-48)
ALSFRS-R (mean and range) 44 (35-48)
Bulbar (n/total) 22/125
Upper limb (n/total) 45/125
Lower limb (n/total) 58/125

sALS, sporadic amyotrophic lateral sclerosis, ALSFRS-R, revised ALS functional
rating scale. Bulbar, upper limb, lower limb is a clinical classification based on
involved body areas at the onset of disease. Cases with only bulbar signs or
symptoms for the first three months from onset, with spinal symptoms or
signs occurring later, are considered bulbar onset ALS. Cases in which any
spinal symptoms or signs appeared in the first three months are considered
spinal onset ALS (either upper or lower limb).
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free or bound to IL-18BP), as described previously [29].
Results obtained with the IL-18BPa ELISA were adjusted
by considering the different molecular weight of the
standard (a chimeric protein), as already described [30].
The concentration of free IL-18 (biologically active cyto-
kine not bound by its inhibitor) was calculated as previ-
ously described [30], by applying the law of mass action
to the measured concentrations of IL-18 and IL-18BP,
considering that the interaction between the two factors
is 1:1 and that the Ky of their binding is 400 pM [31].

Statistical analysis

Analysis of the data was performed using the Mann—
Whitney U-test. Spearman’s rank correlation analysis
was used to correlate disease activity score and serum
levels of cytokines (total IL-18, IL-18BP and free IL-18).
A P value of less than 0.05 was considered statistically
significant.

Results

IL-1B was undetectable in the serum of sALS patients,
with the exception of one ALS patient that had measur-
able circulating IL-1p (Table 2). At variance with IL-1,
IL-18 was measurable in sera and its levels were signifi-
cantly increased in sALS compared to normal healthy
subjects (NHS) (P <0.0001, Figure 1A). The soluble in-
hibitor of IL-18, IL-18BP, was similarly increased in the
serum of sALS patients as compared to NHS (P <0.0001,
Figure 1B). Despite the increase in IL-18BP, serum levels
of free IL-18 were still significantly higher in ALS patients
than in NHS controls (P = 0.0171, Figure 1C).

IL-1B and IL-18 were not detectable in the CSF of
sALS patients or healthy and disease controls (patients
with non-infectious non-inflammatory neurological dis-
eases) (Table 2). IL-18BP was detected in the CSF of
sALS patients (mean + SD: 99 + 67 pM) as well as in dis-
ease controls (91 £ 69 pM) and in healthy controls (156
+116 pM), but these differences were not statistically
significant. The presence of two inhibitors of IL-1 in
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serum and CSF was evaluated. IL-1Ra was not detectable
in NHS sera; IL-1Ra was only detected (547 pg/ml) in
the serum of the one sALS patient who had measurable
IL-1B. In CSE IL-1Ra was found only in one control
(102 pg/ml), without obvious correlation with disease
state. The other IL-1 inhibitor, the soluble form of the
IL-1R2 (sIL-1R2), was present in sera of sALS patients
in amounts similar to controls (Table 2). In CSE, sIL-1R2
was detectable in one healthy control only (326 pg/ml).
IL-33 and sIL-1R4 levels were comparable in sALS and
normal sera. In CSF, the cytokine and its soluble receptor
were undetectable, with the exception of a few patients
and controls (Table 2).

Another important inhibitor of inflammation that has
been recently described is IL-37, a cytokine of the IL-1
family structurally very similar to IL-1 and IL-18, and al-
legedly able to bind to IL-18BP [32]. The most abundant
isoform of the cytokine, IL-37b, was undetectable in the
CSF and serum of both sALS patients and controls
(Table 2). We then analyzed the relationship between
cytokine levels and clinical parameters of the disease.
Free serum IL-18 (as well as total IL-18 and IL-18BP)
did not significantly correlate with the ALSFRS-R score,
nor with the time from diagnosis (data not shown).
When patients were subdivided according to clinical
presentation in bulbar, upper limbs and lower limbs
form, total IL-18 and IL-18BP serum levels were signi-
ficantly higher in each subgroup compared to NHS
(Figure 1A and B). Free IL-18 was significantly increased
in lower limbs form with respect to controls (Figure 1C).

Discussion

The data collected in the current study shows that,
among the cytokines of the IL-1 family tested, only
IL-18 and IL-18BP are increased in the serum of sALS
patients. Measuring both the active cytokine and its in-
hibitor in serum is required in order to correctly evaluate
the net biological effects, as only free IL-18, not captured
by its inhibitor, is able to exert its biological effects [31]. It

Table 2 IL-1 family cytokine and receptor levels in CSF and serum of sALS patients

Cytokine/Receptor CSF Serum

ALS Controls ALS Controls
IL-1B <78 <78 <78 (n=1;472) <78 (n=1;266)
IL-1Ra <781 <781 (n=1,101.7) <781 (n=1;5474) <78.1
sIL-1R2 <3125 <3125 (n=1;3257) 56734 +2771.5 55750+ 13595
IL-33 <300 (n=3;729+323) <300 (n=3;548+27.1) 6254+ 15705 5363 +1166.3
sIL-1R4 <625 (n=4;851+132) <625(h=2;855+39) 724164 799+ 283
IL-37 <46.8 <46.8 <46.8 <468 (n=1;747)
IL-36 NT NT 888.3+7293 1531.7 £1843.2

Values are given as mean pg/ml £ SD rather than in nM since the MW of the mature forms of the cytokines and of the natural soluble receptors are not yet

precisely defined.

CSF, Cerebrospinal fluid; n, Number of samples above the detection limit; NT, Not tested; sALS, sporadic amyotrophic lateral sclerosis.
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Figure 1 Levels of IL-18, IL-18BP and free IL-18 in serum of ALS
patients. Levels of IL-18 (A) and of IL-18BP (B) were measured by
ELISA in sera from sporadic ALS patients (SALS) in comparison to
NHS. Patients were also grouped depending on the form of the
disease. Based on the law of mass action, the concentration of free
IL-18 (not bound and inhibited by IL-18BP) was calculated from
total IL-18 and total IL-18BP concentrations [30,31] (C). Statistical
significance was calculated using the Mann-Whitney U-test. ALS,
amyotrophic lateral sclerosis; BF, bulbar form; LL, lower limbs; NHS,
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normal healthy subjects; UL, upper limbs.

should be noted that an excess of over 100-fold inhibitor
is not sufficient for full inhibition of the active cytokine
because inhibition efficiency depends both on the kinetics
of association and dissociation between the two molecules,
and on the actual concentration of IL-18 and IL-18BP in
serum rather than on their ratio. Thus, despite the over-
production of IL-18BP in these patients, it is nevertheless
insufficient for controlling the excessive production of
IL-18. As a consequence, free active IL-18 is significantly
higher in sALS patients than in healthy individuals.
Whether this increase in the active cytokine levels may
have a pathological significance is not known. Increased
IL-18 levels are associated with a variety of diseases and,
in general, to ongoing inflammation. High levels of circu-
lating IL-18 are found also in mild inflammatory condi-
tions such as in the elderly or in obese individuals [33-35].
In addition, IL-18 can have either protective or detrimen-
tal effects depending on the tissue microenvironmental
conditions, for instance in the regulation of allergic reac-
tions [36] or in the protection versus destruction of the
mucosal tissue [24,37,38].

High concentrations of circulating IL-18 may suggest
the involvement of inflammasome-dependent inflamma-
tion in the disease. The inflammasome, a cytosolic mo-
lecular complex that controls the activation of caspase-1
[39], is a key component of the inflammatory machinery.
Once activated, caspase-1 processes pro-IL-1f and pro-
IL-18, two inflammatory cytokines that require cleavage
in order to attain their active forms. The levels of IL-18
can provide information of inflammasome activation and
local IL-1p production, since circulating IL-1f is detect-
able only in extreme or fatal situations of shock due to
its potent bioactivity. On the other hand, IL-18, which is
much less dangerous than IL-1p as it has not vasoactive
effects, can be found at detectable levels in the serum of
normal subjects and it increases in pathological and
inflammatory conditions, thus acting as a sign of an
ongoing inflammasome-related inflammation.

In the SOD1-G93A mouse model of ALS, the disease
is caused by a mutation in superoxide dismutase 1
(SOD1) that provokes enhanced inflammation and the
production of a broad spectrum of inflammatory cyto-
kines [40-42]. Active caspase-1 is a marker of inflamma-
tion in the CNS of SOD1-G93A mice [11,12]. Indeed,
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microglia and macrophages from these mice show high
levels of caspase-1 activation and concomitant increase
in the secretion of mature IL-1p [1]. SOD1 mutations
are the most common genetic cause of ALS in humans
(accounting for 20% of familial ALS cases) [43], although
in about 95% of ALS patients no genetic cause can be
identified (sALS patients) [44].

In mouse models and in familial ALS patients, activa-
tion of caspase-1 has been detected in spinal cords and,
consequently, mature IL-1f levels were higher in spinal
cord samples [11,12]. Thus, the present study suggests
that caspase-1 activation may also be involved in the
pathogenesis of sALS, in which the SOD1 mutation is
not present.

According to our data, IL-18 and IL-1f are not detect-
able in CSE, suggesting a predominantly tissue-restricted
activity of the inflammatory cytokines. On the contrary,
IL-18BP is present in CSF, but it does not seems to be
associated to the disease since its levels are comparable
between healthy or disease controls and sALS patients.
Another ligand of IL-18BP that is also able to bind the
alpha chain of the IL-18 receptor is IL-37, a cytokine
that down-regulates inflammation by inhibiting the gene
expression of a range of inflammatory cytokines [25,45].
IL-37 increases in response to inflammatory stimulation,
probably acting as a self-regulator of the defensive in-
flammatory reaction [25,45], and its presence has been
observed in several inflammatory disease conditions (for
example in the mucosa of patients with Crohn’s disease)
[46]. IL-37 was not detected in the serum or CSF from
sALS patients or controls. In the absence of measurable
levels of known IL-18BP ligands in the CSE, the high
constitutive levels of IL-18BP may suggest the physio-
logical need to maintain an anti-inflammatory micro-
environment in CNS.

Previous studies suggest that other inflammatory cyto-
kines may play a role in ALS. Increased levels of IL-6
have been observed in CSF and serum of ALS patients
[8,9], and TNF-a was elevated in blood of patients [10].
The chemokine CCL2 (chemoattractant and regulator
of blood—brain barrier permeability [47]) was also in-
creased in the serum and CSF of patients with ALS [48].
On the whole, these data, and our finding of raised
serum levels of free IL-18, support the hypothesis that
inflammatory mechanisms may have an active role in the
disease process of ALS. In addition, our data suggests
that in the sporadic form of the disease inflammasome-
dependent caspase-1 activation may be involved, although
the mechanisms of inflammasome activation would obvi-
ously be different than those in familial ALS. Despite the
fact that IL-1p is not detectable in the circulation, it is
likely that a local increase of this cytokine may occur and
take part in the disease development, whereas the in-
creased levels of circulating IL-18 may be symptomatic of
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an ongoing caspase-1-dependent inflammatory reaction
but not directly involved in the pathology. In parallel to
the notion that caspase-1 is activated in sALS, the absence
of circulating IL-1Ra and the unchanged levels of sIL-1R2,
the two inhibitors of IL-1p activity, suggest that IL-1p
would exclusively exert its pathological effects at the local
level. Overall, these results suggest that anti-inflammatory
approaches based on IL-1f inhibition may be beneficial in
treating sALS.

Conclusions

In the sALS patients we studied, IL-18 levels were signifi-
cantly increased, but did not correlate with disease sever-
ity. This suggests a role of the cytokine in the pathological
mechanisms underlying the disease, rather than in disease
progression. Published data from Meissner et al. in the
SOD1-G93A mouse model [13] showed that deficiency in
caspase-1 IL-1B or IL-18 did not modify disease onset,
thus suggesting that caspase-1-dependent inflammation
does not initiate the disease. On the other hand, both
caspase-1 and IL-1f (but not IL-18) deficiency extended
the lifespan of ALS mice, suggesting that IL-13-dependent
inflammation is involved in the disease process. Thus, cir-
culating IL-18 appears to be a marker of neuroinflamma-
tion, indicating caspase-1 activation and local IL-1p
effects, whereas it does not represent a useful biomarker
in the follow-up of sALS patients.

It is presently unclear if inflammation has a role in ini-
tiating neuronal degeneration in ALS, as demonstrated
for other neurodegenerative diseases, or it rather is the
result of neurodegeneration that then contributes to ex-
acerbate the disease [49-51]. In any case, the experimen-
tal evidence supports the hypothesis that deregulated
inflammatory reactions, in addition to genetic and
environmental factors, could be a key mechanism in
the development of sALS, if not its initiation. This
further suggests that anti-inflammatory treatments,
including inhibition of IL-1f, could be beneficial in
ALS patients.

Abbreviations

ALS: Amyotrophic lateral sclerosis; ALSFRS-R: Revised ALS Functional Rating
Scale; BF: bulbar form; CNS: Central nervous system; CSF: Cerebrospinal fluid;
IgG: Immunoglobulin G; IL: Interleukin; IL-18BP: IL-18 binding protein;

IL-1R: IL-1 receptor; LL: Lower limbs; NHS: Normal healthy subjects;

SALS: Sporadic ALS; sIL-TR2: Soluble IL-1R2; SOD1: Superoxide dismutase

1; UL: Upper limbs.

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution

DB conceived the study. PM and DB designed and coordinated the study’s
experimental activities. PB, BB, CC and GS collected and characterized the
ALS samples. P, IP and PG performed the experiments. PM performed the
statistical analysis. PI, IP, PM and DB wrote the manuscript. All authors read
and approved the manuscript.



Italiani et al. Journal of Neuroinflammation 2014, 11:94
http://www.jneuroinflammation.com/content/11/1/94

Acknowledgements

This work has been partially supported by grant 2011-2114 of Fondazione
CARIPLO (Milano, Italy) (to DB), by the Italian Ministry of Health grant
RF09.150 (to PB), and by the EU Commission FP7 Marie Curie initial
training projects NanoTOES (PITN-GA-2010-264506) and HUMUNITY
(PITN-GA-2012-316383) (to DB).

Author details

'Laboratory of Innate Immunity and Cytokines, Institute of Biomedical
Technologies, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
“Department of Clinical and Experimental Medicine, Neurology Unit,
University of Pisa, Via Roma 55, 56126 Pisa, Italy. 3Department of Clinical and
Experimental Medicine, Clinical Immunology Unit, University of Pisa, Via
Roma 55, 56126 Pisa, Italy. “Neurology Unit, University of Brescia, P.le Spedali
Civili 1, 25123 Brescia, ltaly. *Laboratory of Experimental Neuropsychobiology,
IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Roma, ltaly.
SInstitute of Protein Biochemistry, National Research Council, Via P. Castellino
111, 80131 Napoli, Italy.

Received: 28 February 2014 Accepted: 5 May 2014
Published: 23 May 2014

References

1. Hardiman O, van den Berg LH, Kiernan MC: Clinical diagnosis and
management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011,
7:639-649.

2. Troost D, van den Oord JJ, de Jong JM, Swaab DF: Lymphocytic infiltration
in the spinal cord of patients with amyotrophic lateral sclerosis. Clin
Neuropathol 1989, 8:289-294.

3. Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, Jin X, Reis J,
Narvaez A, McGrath MS: Evidence for systemic immune system alterations
in sporadic amyotrophic lateral sclerosis (SALS). J Neuroimmunol 2005,
159:215-224.

4. Engelhardt JI, Appel SH: IgG reactivity in the spinal cord and motor cortex
in amyotrophic lateral sclerosis. Arch Neurol 1990, 47:1210-1216.

5. Kawamata T, Akiyama H, Yamada T, McGeer PL: Immunologic reactions in
amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol
1992, 140:691-707.

6. Hayashi S, Sakurai A, Amari M, Okamoto K: Pathological study of the
diffuse myelin pallor in the anterolateral columns of the spinal cord in
amyotrophic lateral sclerosis. J Neurol Sci 2001, 188:3-7.

7. Baron P, Bussini S, Cardin V, Corbo M, Conti G, Galimberti D, Scarpini E,
Bresolin N, Wharton SB, Shaw PJ, Silani V: Production of monocyte
chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve
2005, 32:541-544.

8. Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC:
Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis:
immunological parameter and comparison with inflammatory and
non-inflammatory central nervous system diseases. J Neurol Sci 1998,
154:194-199.

9. Ono S, Hu J, Shimizu N, Imai T, Nakagawa H: Increased interleukin-6 of skin
and serum in amyotrophic lateral sclerosis. J Neurol Sci 2001, 187:27-34.

10. Poloni M, Facchetti D, Mai R, Micheli A, Agnoletti L, Francolini G, Mora G,
Camana C, Mazzini L, Bachetti T: Circulating levels of tumour necrosis
factor-alpha and its soluble receptors are increased in the blood of patients
with amyotrophic lateral sclerosis. Neurosci Lett 2000, 287:211-214.

11. Pasinelli P, Houseweart MK, Brown RH Jr, Cleveland DW: Caspase-1 and -3
are sequentially activated in motor neuron death in Cu, Zn superoxide
dismutase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad
Sci U S A 2000, 97:13901-13906.

12, Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski
AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM: Functional role of
caspase-1 and caspase-3 in an ALS transgenic mouse model. Science
2000, 288:335-339.

13. Meissner F, Molawi K, Zychlinsky A: Mutant superoxide dismutase
1-induced IL-1B accelerates ALS pathogenesis. Proc Natl Acad Sci U S A
2010, 107:13046-13050.

14. Garlanda C, Dinarello CA, Mantovani A: The interleukin-1 family: back to
the future. Immunity 2013, 39:1003-1018.

15. Dinarello CA, Arend W, Sims J, Smith D, Blumberg H, O'Neill L, Goldbach-
Mansky R, Pizarro T, Hoffman H, Bufler P, Nold M, Ghezzi P, Mantovani A,

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Page 6 of 7

Garlanda C, Boraschi D, Rubartelli A, Netea M, van der Meer J, Joosten L,
Mandrup-Poulsen T, Donath M, Lewis E, Pfeilschifter J, Martin M, Kracht M,
Muehl H, Novick D, Lukic M, Conti B, Solinger A: IL-1 family nomenclature.
Nat Immunol 2010, 11:973.

Boraschi D, Tagliabue A: The interleukin-1 receptor family. Semin Immunol
2013, 25:394-407.

Franchi L, Eigenbrod T, Mufoz-Planillo R, Nufiez G: The inflammasome: a
caspase-1-activation platform that regulates immune responses and
disease pathogenesis. Nat Immunol 2009, 10:241-247.

Bulau AM, Nold MF, Li S, Nold-Petry CA, Fink M, Mansell A, Schwerd T,
Hong J, Rubartelli A, Dinarello CA, Bufler P: Role of caspase-1 in nuclear
translocation of IL-37, release of the cytokine, and IL-37 inhibition of
innate immune responses. Proc Natl Acad Sci U S A 2014, 111:2650-2655.
Garlanda C, Riva F, Bonavita E, Gentile S, Mantovani A: Decoys and
regulatory ‘receptors’ of the IL-1/Toll-Like receptor superfamily.

Front Immunol 2013, 4:180.

Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe
K, Okura T, Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K,
Fukuda S, Kurimoto M: Cloning of a new cytokine that induces IFN-
gamma production by T cells. Nature 1995, 378:88-91.

Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: Interleukin-18 is a unique
cytokine that stimulates both Th1 and Th2 responses depending on its
cytokine milieu. Cytokine Growth Factor Rev 2001, 12:53-72.

Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T,
Conti B: Interleukin-18 controls energy homeostasis by suppressing
appetite and feed efficiency. Proc Natl Acad Sci U S A 2007, 104:11097-11102.
Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ, Tack CJ,
van Krieken H, Kim SH, Stalenhoef AF, van de Loo FA, Verschueren |, Pulawa
L, Akira S, Eckel RH, Dinarello CA, van den Berg W, van der Meer JW:
Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and
insulin resistance. Nat Med 2006, 12:650-656.

Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR,
Bertin J, Eisenbarth SC, Gordon JI, Flavell RA: NLRP6 inflammasome regulates
colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
Boraschi D, Lucchesi D, Hainzl S, Leitner M, Maier E, Mangelberger D,
Qostingh GJ, Pfaller T, Pixner C, Posselt G, Italiani P, Nold MF, Nold-Petry CA,
Bufler P, Dinarello CA: IL-37: a new anti-inflammatory cytokine of the IL-1
family. Eur Cytokine Netw 2011, 22:127-147.

Arend WP, Palmer G, Gabay C: IL-1, IL-18, and IL-33 families of cytokines.
Immunol Rev 2008, 223:20-38.

Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK,
Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA:
IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-
related protein ST2 and induces T helper type 2-associated cytokines.
Immunity 2005, 23:479-490.

Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi
A: The ALSFRS-R: a revised ALS functional rating scale that incorporates
assessments of respiratory function. BDNF ALS Study Group (Phase ll).
J Neurol Sci 1999, 169:13-21.

Novick D, Schwartsburd B, Pinkus R, Suissa D, Belzer |, Sthoeger Z, Keane
WF, Chvatchko Y, Kim SH, Fantuzzi G, Dinarello CA, Rubinstein M: A novel
IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive
decrease of free IL-18. Cytokine 2001, 14:334-342.

Migliorini P, Anzilotti C, Pratesi F, Quattroni P, Bargagna M, Dinarello CA,
Boraschi D: Serum and urinary levels of IL-18 and its inhibitor IL-18BP in
systemic lupus erythematosus. Eur Cytokine Netw 2010, 21:264-271.

Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M,
Dinarello CA: Structural requirements of six naturally occurring isoforms
of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci U S A 2000,
97:1190-1195.

Bufler P, Azam T, Gamboni-Robertson F, Reznikov LL, Kumar S, Dinarello CA,
Kim SH: A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein
reduces IL-18 activity. Proc Natl Acad Sci U S A 2002, 99:13723-13728.
Boraschi D, Dinarello CA: IL-18 and autoimmunity. Eur Cytokine Netw 2006,
17:224-252.

Dinarello CA: Interleukin-18 and the pathogenesis of inflammatory
diseases. Semin Nephrol 2007, 27:98-114.

Troseid M, Seljeflot I, Arnesen H: The role of interleukin-18 in the metabolic
syndrome. Cardiovasc Diabetol 2010, 9:11.

Yoshimoto T, Tsutsui H, Tominaga K, Hoshino K, Okamura H, Akira S, Paul
WE, Nakanishi K: IL-18, although antiallergic when administered with IL-12,



Italiani et al. Journal of Neuroinflammation 2014, 11:94
http://www.jneuroinflammation.com/content/11/1/94

stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci U S A
1999, 96:13962-13966.

37.  Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E,
Moskaluk CA, Bickston SJ, Cominelli F: IL-18, a novel immunoregulatory
cytokine, is upregulated in Crohn’s disease: expression and localization
in intestinal mucosal cells. J Immunol 1999, 162:6829-6835.

38. Kanai T, Kamada N, Hisamatsu T: Clinical strategies for the blockade of IL-18
in inflammatory bowel diseases. Curr Drug Targets 2013, 14:1392-1399.

39. Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform
triggering activation of inflammatory caspases and processing of pro-IL-1p.
Mol Cell 2002, 10:417-426.

40.  Nguyen MD, Julien J-P, Rivest S: Induction of proinflammatory molecules in
mice with amyotrophic lateral sclerosis: no requirement for proapoptotic
interleukin-1f in neurodegeneration. Ann Neurol 2001, 50:630-639.

41. Hensley K, Fedynyshyn J, Ferrel S, Floyd RA, Gordon B, Grammas P,
Hamdheydari L, Mhatre M, Mou S, Pye QN, Stewart C, West M, West S,
Williamson KS: Message and protein level elevations of tumor necrosis
factor alpha (TNFa) and TNFa-modulating cytokines in spinal cords of
the G93A-SOD1 mouse model for amyotrophic lateral sclerosis.
Neurobiol Dis 2003, 14:74-80.

42. Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova
T, Pye QN, Qi M, Rice H, Stewart C, Stroukoff K, West M: Primary glia
expressing the G93A-SOD1 mutation present a neuroinflammatory
phenotype and provide a cellular system for studies of glial
inflammation. J Neuroinflammation 2006, 3:2.

43. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A,
Donaldson D, Goto J, O'Regan JP, Deng HX: Mutations in Cu/Zn
superoxide dismutase gene are associated with familial amyotrophic
lateral sclerosis. Nature 1993, 362:59-62.

44, Schymick JC, Talbot K, Traynor BJ: Genetics of sporadic amyotrophic
lateral sclerosis. Hum Mol Genet 2007, 16:R233-R242.

45. Dinarello CA, Bufler P: Interleukin-37. Semin Immunol 2013, 25:466-468.

46. Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Ban H, Bamba S, Sonoda H,
Shimizu T, Fujiyama Y, Andoh A: Epithelial expression of interleukin-37b in
inflammatory bowel disease. Clin Exp Immunol 2013, 172:410-416.

47.  Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, van Rooijen N,
Andjelkovic AV: Monocyte chemoattractant protein-1 regulation of
blood-brain barrier permeability. J Cereb Blood Flow Metab 2005,
25:593-606.

48. Gupta PK, Prabhakar S, Sharma S, Anand A: Vascular endothelial growth
factor-A (VEGF-A) and chemokine ligand-2 (CCL2) in amyotrophic lateral
sclerosis (ALS) patients. J Neuroinflammation 2011, 8:47.

49.  Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee
RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA,
Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR,
Moller T, Tabrizi SJ: A novel pathogenic pathway of immune activation
detectable before clinical onset in Huntington's disease. J Exp Med 2008,
205:1869-1877.

50. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker
RA, Piccini P: Microglial activation in regions related to cognitive function
predicts disease onset in Huntington’s disease: a multimodal imaging
study. Hum Brain Mapp 2011, 32:258-270.

51.  Bettcher BM, Kramer JH: Inflammation and clinical presentation in
neurodegenerative disease: a volatile relationship. Neurocase 2013,
19:182-200.

doi:10.1186/1742-2094-11-94

Cite this article as: Italiani et al: Evaluating the levels of interleukin-1
family cytokines in sporadic amyotrophic lateral sclerosis. Journal of
Neuroinflammation 2014 11:94.

Page 7 of 7

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subjects
	Cytokine assay in serum and CSF
	Statistical analysis

	Results
	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References

