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Abstract
Background: Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-
γ)-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of
inducible nitric oxide synthase (iNOS); however, the underlying molecular mechanisms have not yet been well
established. In the present study we explored: (1) the effect of the PPAR-γ agonist pioglitazone on
lipopolysaccharide (LPS)-induced iNOS activity and nitric oxide (NO) generation by microglia; (2) the differential
role of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun NH(2)-terminal kinase (JNK), and
phosphoinositide 3-kinase (PI3K) on LPS-induced NO generation; and (3) the regulation of p38 MAPK, JNK, and
PI3K by pioglitazone.

Methods: Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with
pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt)
were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used
in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH)-
positive neurons were counted in mesencephalic neuron-microglia mixed cultures.

Results: Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and
inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38
MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-
induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK
phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels
were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production.
Furthermore, wortmannin prevented the inhibitory effect of pioglitazone on the LPS-induced NO increase.

Conclusion: We demonstrate that pioglitazone protects dopaminergic neurons against LPS insult at least via
inhibiting iNOS expression and NO generation, which is potentially mediated via inhibition of p38 MAPK activity.
In addition, the PI3K pathway actively participates in the negative regulation of LPS-induced NO production. Our
findings suggest that PPAR-γ activation may involve differential regulation of p38 MAPK and of the PI3K/Akt
pathway in the regulation of the inflammatory process.
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Background
In the central nervous system microglia play a major role
in the inflammatory process, and numerous activated
microglia surround dopaminergic neurons in the substan-
tia nigra (SN) of Parkinson's disease (PD) brains [1].
Uncontrolled microglial activation may be directly toxic
to neurons by releasing various substances such as nitric
oxide (NO), prostaglandin E2, superoxide, and proin-
flammatory cytokines such as interleukin-1β (IL-β),
tumor necrosis factor-alpha, and interleukin-6 [2-5].
These molecules can induce dopaminergic neuron death
[6-8], and inhibition of microglial activation can protect
dopaminergic neurons [8-10].

Although the mechanisms underlying the pathogenesis of
PD are not completely understood, excessive oxidative
stress is thought to play a critical role, and much attention
has been placed on NO as a key factor. At physiological
concentrations, NO is relatively nonreactive and most of
its actions are related to neurotransmitter release, neuro-
transmitter reuptake, neurodevelopment, synaptic plastic-
ity, and regulation of gene expression [11]. However,
excessive production of NO can lead to neurotoxicity due
to its conversion into a number of more reactive deriva-
tives, collectively known as reactive nitrogen species. At
high concentrations NO reacts directly with superoxide,
with the fastest biochemical rate constant currently
known, to produce peroxynitrite, a strong lipid-permea-
ble oxidant that can oxidize proteins, lipids, RNA, and
DNA. Peroxynitrite can inhibit mitochondria complex I,
complex II, cytochrome oxidase (complex IV), and the
ATP synthase [12-14] as well as increase mitochondrial
proton permeability [14]. In addition, NO can induce
reactive oxygen and reactive nitrogen species production
from mitochondria [15], which may also induce mito-
chondrial permeability transition [16], resulting in cellu-
lar injury and ultimately cell death. In the case of PD as
well as in PD animal models, it has been demonstrated
that activated microglia exhibit a robust expression of
inducible nitric oxide synthase (iNOS) [3-5,17], and inhi-
bition of iNOS provides neuroprotection to SN dopamin-
ergic neurons against a variety of toxic insults [5,18-21].

Mitogen-activated protein kinases (MAPKs), including
p38 MAPK, c-Jun NH(2)-terminal kinase (JNK), and
extracellular signal-regulated protein kinase (ERK1/2),
have been suggested to be involved in oxidative stress and
proinflammatory signaling cascades, and evidence dem-
onstrates that activation of p38 MAPK, JNK, and ERK1/2
signal cascades may be involved in lipopolysaccharide
(LPS)-induced insults in microglia and cells derived from
immortalized cell lines [20,22-25]. Activated microglia-
induced neuronal death has been attributed to p38 MAPK
and JNK activation [26], and a recent study showed that

inhibition of JNK and p38-MAPK rescues dopaminergic
neurons from a thrombin-activated microglia insult [27].

Nevertheless, the phosphoinositide 3-kinase (PI3K)/pro-
tein kinase B (Akt) pathway has been known to regulate
cell growth, proliferation, glucose metabolism, transcrip-
tion, protein synthesis, and cell survival [28]. In addition,
PI3K/Akt regulates cellular activation, inflammatory
responses, and apoptosis [29]. Recent studies have dem-
onstrated that the PI3K/Akt pathway imposes a braking
mechanism to limit the expression of proinflammatory
mediators in LPS-treated monocytes by inhibiting the JNK
and p38 MAPK pathways [30].

The peroxisome proliferator activated receptor-gamma
(PPAR-γ) is a nuclear transcription factor reported in
mammals in 1993 as an orphan receptor [31]. While it is
mainly expressed in adipose tissue it also occurs in cells of
the immune system, where it acts as a negative regulator
of macrophage and microglia activation [32-34]. PPAR-γ
forms a heterodimer with another nuclear receptor, retin-
oid X receptor alpha (RXRα). Upon activation of this com-
plex, it binds to specific DNA sequence elements on target
genes, termed peroxisome proliferator response elements,
leading to responsive gene expression [35]. In addition,
several studies have shown anti-inflammatory effects with
PPAR-γ agonists. However, most of these effects are medi-
ated via PPAR-γ independent mechanisms, including
interference with nuclear factor-kappa B and activator
protein-1 [36-42], phosphatase 2A [43], ERK [44], and
JNK activity [45] via a process termed transrepression. For
a more detailed review of PPAR-γ in inflammation see
Daynes and Jones 2002 [46], and in microglia-mediated
inflammation see Bernardo and Minghetti 2006 [47].

We previously showed that pioglitazone, a PPAR-γ ago-
nist, provided neuroprotective properties to SN dopamin-
ergic neurons in LPS-induced PD models both in vivo and
in vitro [10,48], in which pioglitazone prevented LPS-
induced expression of iNOS. In addition, we have demon-
strated that pioglitazone may have therapeutic potential
for the treatment of PD [10]. However, the potential dif-
ferential regulation of iNOS expression and activity by
p38 MAPK, JNK, and PI3K/Akt has not yet been explored.
In the present study we examined the role of p38 MAPK,
JNK, and PI3K/Akt in relation to the ability of pioglita-
zone to attenuate LPS-induced iNOS expression and NO
production.

Methods
Animals
Timed-pregnant Sprague Dawley rats were obtained from
Harlan (Indianapolis, IN, USA), and maintained in a
pathogen-free environment. Housing, breeding, and
experimental use of the animals were performed in strict
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accordance with the National Institutes of Heath guide-
lines and were approved by the Institute's Animal Care
and Use Committee at the University of Kentucky.

Reagents
Cell culture materials were obtained from Invitrogen
(Carlsbad, CA, USA). Pioglitazone and Salmonella minne-
sota LPS was from Sigma-Aldrich (St Louis, MO, USA). The
selective inhibitors were as follows: 1400W-iNOS inhibi-
tor from Cayman Chemical (Ann Arbor, MI, USA), Cyto-
sine β-D-arabinofuranoside hydrochloride from Sigma-
Aldrich, SP600125-JNK inhibitor and SB203580-p38
inhibitor from A.G. scientific (San Diego, CA, USA), and
wortmannin-PI3K inhibitor from Sigma-Aldrich. Anti-
bodies used were: polyclonal anti-tyrosine hydroxylase
(TH) antibody from Pel-Freez Biologicals (Rogers, AR,
USA), polyclonal anti-iNOS from Millipore (Billerica,
MA, USA), monoclonal anti-phospho p38 from Cell Sig-
naling (Danvers, MA, USA), monoclonal anti-PPAR-γ
(ser473) from Upstate (Billerica, MA, USA), polyclonal
anti-PI3K p110 and polyclonal anti-Akt (Thr308) from
Santa Cruz (Santa Cruz, CA, USA), and monoclonal anti-
β-actin from Sigma-Aldrich (St Louis, MO, USA). The ABC
kit and biotinylated secondary antibodies were purchased
from Vector Laboratories (Burlingame, CA, USA).

Mesencephalic neuron-microglia mixed cultures
Neuron-microglia mixed cultures were prepared from
ventral mesencephalic tissues. Briefly, midbrain tissues
were dissected from prenatal day 14 rat embryos in Ca++/
Mg++ free medium (CMF). Cells were dissociated via gen-
tle mechanical trituration in Hanks' Balanced Salt Solu-
tion (HBSS) containing newborn calf serum (3.5:1 v/v),
the concentration of the cell suspension was ~1.2 × 107

cells/ml before seeding, and the cells were seeded at 1 ×
105 cells/well in poly D-lysine (50 µg/ml) pre-coated 24-
well plates for immunocytochemistry, or at 2 × 106 cells/
well in pre-coated 6-well plates for western blot. Cells
were fed with minimium essential medium (MEM) con-
taining 10% horse serum and 10% fetal bovine serum
(FBS). Twenty-four hours later, 10 µM cytosine β-D-arab-
inofuranoside hydrochloride was added to suppress glial
proliferation. Two to three days after seeding, the cells
were replenished with 500 µl of fresh MEM with 5% horse
serum and FBS. At DIV6 or DIV7 microglia (2 × 105 cells)
were added to primary mesencephalic neuron-enriched
cultures containing 1 × 105 cells per well and, after 24
hours, the cultures were treated with various protocols.
DMSO was used as vehicle control since it was used to dis-
solve pioglitazone and other inhibitors.

Microglia-enriched cultures
Primary glial cell cultures were established from the cere-
bral cortices of 2–3 day-old Sprague Dawley rat pups.
Briefly, cerebral cortices were minced and gently dissoci-

ated by repeated pipeting in HBSS supplemented with
newborn calf serum (3.5:1 v/v). Cells were collected by
centrifugation (1000 g × 6 min), resuspended in dul-
becco's modified eagle medium (DMEM/F-12) contain-
ing 10% FBS, penicillin (100 U/ml), and streptomycin
(100 µg/ml), and were cultured on 175 cm2 cell culture
flasks in 5% CO2 at 37°C. Floating microglia were har-
vested at 2–8 weeks by shaking off at 200 rpm, where the
final concentration of the cell suspension was ~1.4 × 106

microglial cells/ml. Microglia were re-seeded back into
24-well plates (2 × 105 cells) for NO assays and neuron-
microglia mixed cultures. After 30 min, cultures were
washed to remove non-adherent cells, and fresh medium
was added. The purity of the microglial culture was >98%
as determined by immunocytochemistry. Cultures were
treated 24 hr after seeding the microglia.

Immunocytochemistry
Culture medium was removed, the cells were rinsed in Tris
buffer (pH = 7.3), fixed in 4% paraformaldehyde for 20
min, and rinsed again in Tris. Non-specific staining was
blocked with 10% goat serum for one hour. Next, cells
were incubated overnight at 4°C in primary TH antibody
(1:10,000). After incubation in primary antibody, the
cells were rinsed several times with Tris before a 1 hr incu-
bation in the biotin-conjugated secondary antibody, goat
anti-rabbit IgG (1:1000). This was followed by a series of
rinses and incubation in the ABC-peroxidase reagent (Bur-
lingame, CA. USA). The cells were rinsed and the color
was developed with 3,3'-diaminobenzidine and 0.03%
hydrogen peroxide in Tris buffer. Images were acquired
using a Zeiss Axioplan 2 microscope connected to a digital
Zeiss Axio camera operated by the AxioVision software.
The TH-positive neurons were counted in each 24-well
plate, and the percentage of control was reported. TH-
immunostained neurons were considered healthy if they
had at least two neurites and the length of all the neurites
was two times longer than the diameter of the cell body.

Nitrite oxide assay
The production of NO was assessed by the accumulation
of nitrite in culture supernatants by using the colorimetric
reaction of the Griess reagent. Culture supernatants were
collected at different time points following LPS stimula-
tion and were mixed with Griess reagent (0.1% N-[1-
naphthyl] ethylenediamine dihydrochloride, 1% sulfanil-
amide, and 2.5% H3PO4). The absorbance at 548 nm was
measured with a spectraMAX microplate reader from
Molecular Devices (Sunnyvale, CA, USA).

Western blot
Cells were collected and lysed for western blot. Protein
concentrations were determined with the bicinchoninic
acid assay following the manufacturer's guide. Equal
amounts of protein were loaded, separated by PAGE gel
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electrophoresis, and were transferred to polyvinylidene
difluoride membranes. Membranes were blocked with
5% nonfat milk and were incubated overnight at 4°C with
polyclonal anti-iNOS antibody (1:1000), monoclonal
anti-p38 (1:2000), monoclonal anti-PPAR-γ (1:250), pol-
yclonal anti-PI3K p110 (1:250), polyclonal anti-Akt
(1:250), or monoclonal anti-β-actin (1:4000). Peroxi-
dase-linked anti-rabbit or anti-mouse IgG (1:4000) was
used as the secondary antibody and the ECL Plus kit from
Amersham Biosciences Inc (Piscataway, NJ, USA) was
used for chemiluminecent detection. The optical density
was measured using the scion image™ software (Frederick,
MD, USA).

Statistical analysis
The data are expressed as the means ± SEM and statistical
significance was assessed by ANOVA followed by a Tukey
comparisons test using the SYSTAT 10 software (SPSS Inc.,
Chicago, Illinois). A value of p < 0.05 was considered sta-
tistically significant.

Results
Pioglitazone inhibits LPS-induced nitric oxide generation 
in microglia-enriched cultures
To determine the effect of the PPAR-γ agonist pioglitazone
on NO generation, two different doses of pioglitazone (1
µM and 10 µM) were administered to microglia-enriched
cultures 1 hr before LPS (1 µg/ml) treatment. LPS induced
a 4-fold increase in NO generation (p < 0.001) after 48 hr,
and pretreatment with pioglitazone reduced NO produc-
tion by about 40% to 60% (p < 0.001), respectively (Fig
1). Administration of pioglitazone concurrent with LPS,
or 1 hr after LPS, failed to inhibit the LPS-induced NO
increase (data not shown). In addition, pioglitazone
alone did not alter NO production.

Pioglitazone inhibits LPS-induced iNOS expression, and 
iNOS inhibition protects dopaminergic neurons from LPS 
insults in mesencephalic mixed cultures
In this set of experiments, iNOS expression was deter-
mined by western blot performed 48 hrs after LPS (1 µg/
ml) treatment. As shown in Fig 2A, basal iNOS expression
was decreased by pioglitazone (p < 0.001), LPS treatment
produced significantly enhanced iNOS expression (p <
0.01), and pretreatment with pioglitazone (10 µM) signif-
icantly reduced this LPS-induced increase in iNOS expres-
sion (p < 0.01). In addition, we used
immunocytochemistry for TH-positive cells to assessed
the effect of a specific iNOS inhibitor, 1400 W (1 nM to
10 µM), on the survival of dopaminergic neurons 72 hr
after LPS treatment. Fig 2B shows that LPS induces a sig-
nificant loss (90%) of the TH-positive neurons when the
iNOS inhibitor is administered 1 hr before LPS (1 µg/ml).
Partial neuroprotection against the LPS insult was seen

when using 1400 W at 100 nM (p < 0.05) and 1 µM (p <
0.001).

Pioglitazone reduces NO levels by inhibition of p38 MAPK 
activity
In the third part of our experiment, two proinflammatory
pathways were examined, in order to demonstrate their
involvement in the LPS-induced increase in NO produc-
tion. Either SB203580 (a selective p38 MAPK inhibitor) or
SP600125 (a selective JNK inhibitor) were administered
to microglia-enriched cultures 1 hr before LPS (1 µg/ml)
exposure. As shown in Fig 3A, LPS significantly increased
NO generation (p < 0.001) and inhibition of p38 MAPK
activity by pretreatment with SB203580 (5 µM) decreased
this NO production (p < 0.05). Of particular interest, pre-
treatment with pioglitazone (10 µM) 1 hr before LPS (1
µg/ml) decreased phosphorylation of p38 MAPK (Fig 3B),
and pretreatment with wortmannin (1 µM and 10 µM)
increased LPS-induced p38 MAPK phosphorylation in a
dose-dependent manner (Fig 4A and 4B. p < 0.05). An
increase in phosphorylation of p38 MAPK was not found
when wortmannin was administered alone, without LPS
stimuli (Fig 4D). Wortmannin also did not change JNK
expression (Fig 4A and 4C).

Inhibition of PI3K activity prevents the inhibitory effect of 
pioglitazone on LPS-induced NO production
To determine if pioglitazone enhances PI3K/Akt expres-
sion and if its inhibition enhances LPS-induced NO gen-
eration, the levels of PI3K and Akt were determined.
PPAR-γ, PI3K, and Akt phosphorylation were measured

Pioglitazone inhibits LPS-induced NO production in micro-glia-enriched culturesFigure 1
Pioglitazone inhibits LPS-induced NO production in 
microglia-enriched cultures. Microglia cultures were 
treated with pioglitazone (1 µM and 10 µM) 1 hr before LPS 
treatment, and 48 hrs later NO levels were measured. LPS 
significantly induced NO generation, and pretreatment with 
pioglitazone inhibited this LPS-induced NO production in a 
dose-dependent manner. Data presented are representative 
of three independent experiments (n = 3). (***p < 0.001 vs. 
control ###p < 0.001 vs. LPS)
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after LPS (1 µg/ml) exposure. As shown in Fig 5, PPAR-γ
activation was observed in pioglitazone-treated cultures
within 10 min after DMSO or LPS. PI3K and phosphor-
ylated Akt were increased 60 min after LPS in the pioglita-
zone-treated cultures (Fig. 5, p < 0.05). Next, wortmannin
(1 µM) was added 30 mins before pioglitazone (10 µM)
treatment and the NO level was measured 48 h after LPS
(1 µg/ml). The results showed that pretreatment with
pioglitazone inhibited the LPS-induced NO increase (p <
0.01). However, when wortmannin was given 30 mins
before pioglitazone, NO production was increased over
LPS exposure (p < 0.05). Interestingly, administration of
wortmannin (1 µM) 30 min before pioglitazone followed
by LPS 1 hr later did not show the inhibitive effect of
pioglitazone on NO level. Wortmannin alone, or together
with pioglitazone, did not influence NO generation with-
out LPS stimulation. Thus, pioglitazone prevents LPS-
induced NO production, and pretreatment with wort-
mannin increases NO generation (Fig 6).

Discussion
In our previous study, we reported that LPS injection into
rat striatum induces a nigrostriatal inflammatory
response, followed by dopaminergic neuronal loss, and
that pioglitazone rescues dopaminergic neurons partially
by inhibiting iNOS and COX-2 expression [10]. The

present in vitro study was designed to investigate signal
transduction pathways that may underlie the neuropro-
tection seen with pioglitazone against LPS exposure. We
demonstrate that pioglitazone provides neuroprotective
effects partially via reducing iNOS expression and NO
generation from LPS-activated microglia. This appears to
be associated with inhibition of p38 MAPK. In addition,
pioglitazone increases PPAR-γ activation as well as PI3K/
Akt activity, which may play a role in the inhibition of
LPS-induced NO production.

Pioglitazone inhibits LPS-induced iNOS and its inhibition 
protects dopaminergic neurons against LPS insult
Pretreatment of microglia-enriched cultures with pioglita-
zone (10 µM) significantly inhibited the LPS-induced
increase in NO production (Fig 1). Previous studies have
shown that pretreatment with pioglitazone decreases
iNOS-positive cells in the SN and striatum of MPTP-
treated mice [49] as well as decreases iNOS expression
post intrastriatal LPS [10], intracerebellar LPS [50], and
post in vitro LPS exposure [51], and these findings support
our present results. In addition, we failed to observe any
inhibitory effect of pioglitazone on LPS-induced NO pro-
duction when pioglitazone was administered concurrent
with LPS or 1 hr after LPS treatment, which suggests that
PPAR-γ-mediated anti-inflammatory pathways and LPS-

Pioglitazone inhibits LPS-induced iNOS expression, and iNOS inhibition protects dopaminergic neurons from LPS insultsFigure 2
Pioglitazone inhibits LPS-induced iNOS expression, and iNOS inhibition protects dopaminergic neurons from 
LPS insults. Rat mesencephalic mixed cultures were treated with 1 µg/ml LPS for 48 hours. A: LPS treatment upregulated the 
expression of iNOS, and pretreatment with pioglitazone (10 µM), 1 hr before LPS, prevents its expression. B: Rat mesen-
cephalic mixed cultures were treated with the selective iNOS inhibitor 1400 W, with different doses from 1 ng/ml to 10 µM/
ml, 1 hr before a 72 hr LPS exposure. The number of TH-positive neurons was determined by immunocytochemistry. Data 
presented are representative of three independent experiments (n = 3). (**p < 0.01 vs. control, ***p < 0.001 vs. control, #p < 
0.05 vs. LPS, ##p < 0.01 vs. LPS, ###p < 0.001 vs. LPS).
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mediated inflammatory pathways might target and inter-
act with common active molecules. There are several
potential candidates that can be competitively targeted
within these two pathways. The first candidate is LPS-
induced MAPK activation. As Camp's study demonstrated
using 293T cells, PPAR-γ can be phosphorylated by JNK

and by p38 MAPK at its ser82 residue, and an increase in
PPAR-γ phosphorylation may reduce its sensitivity to
PPAR-γ ligands such as pioglitazone [52,53]. The second
candidate is CD14, where LPS-induced microglia activa-
tion is mediated by CD14. However, the PPAR-γ agonist
15d-PGJ2 and rosiglitazone negatively regulate CD14
mRNA transcription in primary mouse microglia cultures
[54]; although, a caveat to this finding is that 15d-PGJ2
was recently shown not to be a biologically relevant PPAR-
γ agonist [38]. A third candidate for competitive targeting
by LPS and PPAR-γ is RXR. Recent studies have shown that
rosiglitazone inhibits LPS-mediated RXR nuclear export,
resulting in increased nuclear binding of RXR in hepato-
cytes of mice [55], and that the RXR agonist, 9-cis retinoic
acid, inhibits NO production by LPS-activated microglia
[56]. In addition to the inhibition of LPS-induced NO
production by pioglitazone, LPS-induced iNOS protein
expression (as measured by immunoblotting) was pre-
vented by pretreatment with pioglitazone (Fig. 2A). We
previously demonstrated the ability of pioglitazone to
attenuate the LPS-induced increases in iNOS expression
[10]. We also observed some basal generation of NO, and
almost no iNOS immunoreactivity in pioglitazone-
treated cultures, suggesting that pioglitazone alone can
inhibit iNOS expression. This basal NO may be generated
by neuronal or endothelial NOS; however, we cannot rule
out that the function of very limited iNOS is increased in
a compensatory way, so that there is a basal generation of
NO. Our results also demonstrate that inhibition of iNOS,
with its specific inhibitor 1400 W, protects dopaminergic
neurons against LPS-induced neurotoxicity. This data is
supported by a previous study using iNOS inhibitors to
attenuated dopaminergic neuron loss after intranigral LPS
treatment [5]. Therefore, we speculate that pioglitazone
protects dopaminergic neurons at least via inhibition of
iNOS expression and function, which is consistent with
other studies [10,21,49,57]. However, 1400 W, at 10 µM,
did not protect TH-positive neurons (data not shown).
Since 1400 W is a highly selective iNOS inhibitor that
operates in a time-, dose-, and NADPH-dependent man-
ner, it may bind iNOS to inhibit its function in the lower
dose range [58,59] but, at higher concentrations, 1400 W
might detach from iNOS leading to recovery of iNOS
function. Another possibility is that iNOS and COX-2
cross talk with each other [60], that and once iNOS is
inhibited, the function of COX-2 might be increased as a
compensatory mechanism. Further work needs to be per-
formed to determine this relationship.

P38 MAPK is associated with LPS-induced NO generation 
and PI3K/AKT mediated p38 MAPK activity upon LPS 
stimuli
To further clarify which proinflammatory pathways might
be involved in mediating the inhibition of LPS-induced
NO by pioglitazone, selective inhibitors for p38 MAPK

Inhibition of NO by pioglitazone is related to inhibition of p38 MAPK activityFigure 3
Inhibition of NO by pioglitazone is related to inhibi-
tion of p38 MAPK activity. A: A selective p38 MAPK 
inhibitor (SB203580), or a selective JNK inhibitor 
(SP600125), was added to microglia-enriched cultures 1 hr 
before LPS (1 µg/ml) exposure and, after 24 hrs, NO levels 
were measured. Only the p38 MAPK inhibitor prevented 
NO production. B: Pretreatment with pioglitazone inhibited 
LPS-induced phosphorylation of p38 MAPK in mesencephalic 
neuronal-microglia mixed cultures. Pioglitazone was added 1 
hr before LPS treatment (1 µg/ml) and, after 30 mins, p38 
MAPK was immunobloted. As shown in 3B, LPS increased 
phosphorylation of p38 MAPK, and pretreatment with piogli-
tazone inhibited this expression. Data presented are repre-
sentative of three independent experiments (n = 3). (*p < 
0.05 vs. control, ***p < 0.001 vs. control, #p < 0.05 vs. LPS).
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(SB203580 5 µM) and for JNK (SP600125 5 µM) were
administered before LPS stimulation. It is interesting that
inhibition of LPS-induced NO production was only
observed with administration of the p38 MAPK inhibitor,
but not with the JNK inhibitor, in microglia-enriched cul-
tures. These results suggest that p38 MAPK might be asso-
ciated with LPS-mediated iNOS regulation, but not with
JNK. In addition, our study showed that pretreatment
with pioglitazone before LPS (1 µg/ml) reduces phospho-

rylation of p38 MAPK (Fig 3B), which suggests that piogl-
itazone inhibits LPS-induced iNOS and NO production
via suppression of p38 MAPK phosphorylation. Evidence
has shown that inhibition of different MAPK pathways is
associated with decreases in LPS-induced NO production
[22], where the inhibitory effect of p38 MAPK has been
more consistently observed [61,62]. In addition, our
results are also consistent with two recent in vivo studies

Inhibition of PI3K activity increases LPS-induced p38 MAPK activityFigure 4
Inhibition of PI3K activity increases LPS-induced p38 MAPK activity. Wortmannin (1 µM and 10 µM) was adminis-
tered to mesencephalic neuronal-microglia mixed cultures before LPS (1 µg/ml) was added and, after 30 mins, p38 MAPK was 
immunobloted. As shown in 4A, wortmannin enhances the phosphorylation of p38 MAPK under LPS stimulation in a dose-
dependent manner (Fig 4A and 4B. p < 0.05), however, wortmannin did not increase p38 phosphorylation without LPS stimula-
tion (Fig 4D). In contrast, inhibition of PI3K activity by wortmannin did not change JNK expression (Fig 4C). Data presented 
are representative of three independent experiments (n = 3). (*p < 0.05 vs. wortmannin 1 µM + LPS).
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which suggest a role for p38 MAPK, but not JNK, in LPS-
induced activation of iNOS [63,64].

Inhibition of PI3K with wortmannin did not enhance JNK
phosphorylation upon LPS stimulation (Fig. 4A and 4C).
In contrast, wortmannin enhanced p38 MAPK phosphor-
ylation upon LPS stimulation in a dose-dependent man-
ner (p < 0.05, Fig 4A and 4B), suggesting that PI3K/Akt
mediated LPS-induced p38 MAPK activity and pioglita-
zone might inhibit LPS-induced NO generation via regu-
lation of PI3K/Akt activity.

Pioglitazone may inhibit LPS-induced NO generation via 
activation of PI3K/Akt pathway
The western blot study on the relationship of PPAR-γ acti-
vation and PI3K/Akt activity upon LPS stimuli showed a
great amount of PPAR-γ phosphorylation with pioglita-
zone alone and with pioglitazone plus LPS, 10 mins after
DMSO or LPS exposure, when compared to the control
group and LPS group. This was accompanied by the
enhanced level of PI3K and Akt phosphorylation in the
pioglitazone alone or pioglitazone plus LPS group after a
60 min DMSO or LPS exposure. These results suggest that
activation of the PI3K/Akt pathway by pioglitazone might
be via PPAR-γ activation. Whether the activation of PI3K/

Akt by pioglitazone is PPAR-γ dependent or independent
needs to be further clarified.

Our present study shows that inhibition of PI3K activity
significantly enhances LPS-induced NO production (Fig.
6). Furthermore, pretreatment with wortmannin (1 µM)
prevented the inhibitory effect of pioglitazone on the LPS-
induced increase in NO production, suggesting that inhi-
bition of NO by pioglitazone is PI3K-dependent.
Although several reports have demonstrated that LPS acti-
vates the PI3K pathway in mesangial cells, smooth muscle
cells, and cell lines [65,66], studies on macrophages,
whose morphology and phenotype are closer to those of
microglia, show that inhibition of the P13K pathway
enhances LPS-induced NO production [67]. Conversely,
in the intrastriatal 6-OHDA PD model, transduction of
neurons with the myristoylated form of Akt (Myr-Akt) has
potent anti-apoptotic effects on dopaminergic neurons of
the SN, sparing 80% of neuronal apoptosis. A more recent
study demonstrated that human iNOS promoter induc-
tion by LPS/IFN-γ is suppressed by PI3K/Akt via inhibi-
tion of forkhead transcription factor FKHRL1 [68]. In
addition, Akt can interact directly with mixed-lineage
kinase 3, resulting in diminished JNK activation by
mixed-lineage kinase 3. Kim et al demonstrated that Akt

Pioglitazone activates PPAR-γ and enhances PI3K/Akt activityFigure 5
Pioglitazone activates PPAR-γ and enhances PI3K/Akt activity. Rat mesencephalic cultures (2 × 106 cells/well) were 
treated with pioglitazone (10 µM) only, or 1 hr before LPS (1 µg/ml) exposure. PPAR-γ activation was assessed after 10 min, 
and P13K and Akt were assessed after 60 min. PPAR-γ activation, PI3K and Akt expression were observed in the pioglitazone-
treated cultures, compared to control and LPS-only groups. Data presented are representative of three independent experi-
ments (n = 3). (*p < 0.05 vs. control, #p < 0.05 vs. LPS, ##p < 0.01 vs. LPS).
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binds to apoptosis signal-regulating kinase 1, phosphor-
ylates it at serine 83, and thereby reduces its kinase activity
[69]. We did not find that LPS decreased PI3K or Akt levels
as assessed by western blot, although there was a trend
toward decreased PI3K and Akt phosphorylation in the
pioglitazone plus LPS group, when compared to the piogl-
itazone alone group. This suggests that inhibition of LPS-
induced NO generation by pioglitazone might occur inde-
pendent of the LPS-induced inhibition of PI3K/Akt path-
way; however, this needs further investigation. Although
we observed that pioglitazone inhibited LPS-induced NO
production via increasing PI3K/Akt activity and decreas-
ing p38 MAPK phosphorylation, pioglitazone may also
modulate NO production through other mechanisms. For
instance, as a synthetic ligand for PPARγ, pioglitazone
might inhibit iNOS, at least in part, through the repres-
sion of the activator of transcription 1 or nuclear factor-
kappa B [70].

Conclusion
Our present study shows that the PPAR-γ agonist, piogli-
tazone, significantly inhibits LPS-induced microglial
increases in iNOS expression and NO production. This

might be mediated by activation of the PI3K/Akt pathway,
followed by inhibition of p38 MAPK activity, which may
contribute to the inhibitory effects of pioglitazone on LPS-
induced NO generation; thus, protecting dopaminergic
neurons against LPS toxicity.
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