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Abstract

Background: The protein alpha-synuclein (a-SYN), which is found in the Lewy bodies of dopamine-producing (DA)
neurons in the substantia nigra (SN), has an important role in the pathogenesis of Parkinson’s disease (PD). Previous
studies have shown that neuroinflammation plays a key role in PD pathogenesis. In an AAV-synuclein mouse model
of PD, we have found that over-abundance of a-SYN triggers the expression of NF-kB p65, and leads to microglial

neurodegeneration.
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activation and DA neurodegeneration. We also have observed that Fcy receptors (FcyR), proteins present on the
surface of microglia that bind immunoglobulin G (IgG) and other ligands, are key modulators of a-SYN-induced

Methods: In order to study the role of FcyRs in the interactions of a-SYN and microglia, we treated the primary
microglial cultures from wild-type (WT) and FcyR™™ mice with aggregated human a-SYN in vitro.

Results: Using immunocytochemistry, we found that a-SYN was taken up by both WT and FcyR™™ microglia,
however, their patterns of internalization were different, with aggregation in autophagosomes in WT cells and more
diffuse localization in FcyR™™ microglia. In WT microglia, a-SYN induced the nuclear accumulation of NF-kB p65
protein and downstream chemokine expression while in FcyR™™ mouse microglia, a-SYN failed to trigger the
enhancement of nuclear NF-kB p65, and the pro-inflammatory signaling was reduced.

Conclusions: Our results suggest that a-SYN can interact directly with microglia and can be internalized and
trafficked to autophagosomes. FcyRs mediate this interaction, and in the absence of the gamma chain, there is
altered intracellular trafficking and attenuation of pro-inflammatory NF-kB signaling. Therefore, blocking either FcyR
signaling or downstream NF-kB activation may be viable therapeutic strategies in PD.

Background

Parkinson’s disease (PD) is a degenerative neurological
disorder characterized primarily by loss of dopaminergic
(DA) neurons from the substantia nigra pars compacta
(SNpc). Genetic and biochemical evidences have estab-
lished a close link between the protein alpha-synuclein
(a-SYN) and the pathogenesis of the disease [1,2]. The
disease may be triggered by mutations or overexpression
of a-SYN, and all cases of PD are associated with accu-
mulation of insoluble a-SYN [2,3]. The most prominent
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neuropathological features, intraneuronal Lewy bodies
and Lewy neurites, are composed mainly of fibrillar
a-SYN [1]. However, the mechanism by which excess
and modified a-SYN leads to the degenerative process in
PD is still unclear.

Neuroinflammation plays an important role in the
pathogenesis and progression of PD. Microglial activa-
tion and T-lymphocyte infiltration are consistently
observed in the SN of PD patients and in the animal
models of PD [4-6]. Meanwhile, cytokines like tumor ne-
crosis factor alpha (TNF-a), interleukin 1-beta (IL-1b),
and interleukin 6 (IL-6) show increased concentration in
the serum and cerebrospinal fluid of PD patients [7].
Moreover, a genome-wide association study has shown
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that polymorphisms in HLA-DR are associated with
sporadic PD [8-10]. In previous studies, we have used a
mouse model in which a-SYN is overexpressed using an
adeno-associated viral vector (AAV) to reproduce many
of these features, including IgG deposition, classical
microglial activation with increased production of pro-
inflammatory cytokines, and B- and T-lymphocyte infil-
tration in the SN [11]. The prominence of this inflam-
matory response to a-SYN overexpression has led us to
explore the mechanisms responsible for a-SYN-induced
immune activation.

Fc gamma receptors (FcyR) are proteins expressed on
the surface of microglia as well as other cell types, includ-
ing natural killer cells, neutrophils, and mast cells. They
bind to immunoglobulin G (IgG) and some non-IgG
ligands, such as complement receptors and C-reactive
proteins [12-14], and can trigger microglial activation and
cellular responses. In our previous studies in vivo, we
have found that the Fc receptors appear to have a key role
in a-SYN-induced inflammation: deficiency of FcyRs
blocks a-SYN-induced NF-kB-driven pro-inflammatory
signaling, and attenuates microglial activation and DA
neurodegeneration [15].

In order to study whether excess a-SYN interacts dir-
ectly with microglia and what role FcyRs play in this
process, we treated the primary microglia of wild-type
(WT) and FcyR’/ ~ mice with human a-SYN in vitro. We
found that microglia can internalize aggregated a-SYN,
and this leads to activation of NF-kB signaling with
downstream induction of chemokines. This process is
modulated by FcyRs, even in the absence of IgG. These
data show that FcyRs play a role in the interaction of
microglia with aggregated o-SYN, and targeting these
interactions may be useful in modifying the inflamma-
tory state in PD.

Methods

Animals

C57BL/6 mice and FcyR™~ mice were used for the study.
The FcyR™™ mice in a C57BL/6 background were obtained
from Taconic labs (model # 000583-M-M, Taconic,
Hudson, NY, USA). These mice (nomenclature: B6.129P2-
Fcer1g"™ " N12) are deficient in the gamma chain subunit
which is found in several members of the Fc family: FcyRI,
FcyRIII, and FceRL They exhibit immune system defects
such as inability to phagocytose antibody-coated particles,
and the inflammatory responses to immune complexes are
attenuated [16]. All experiments were carried out in com-
pliance with the USPHS Guide for Care and Use of Labora-
tory Animals. All experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) of
The University of Alabama at Birmingham with Animal
Protocol Number 100908919.

Page 3 of 11

Mouse primary microglia culture and a-SYN treatment
Microglia were isolated from postnatal day 0 to 3 (P0O-P3)
C57BL/6 mice and FcyR™'~ mouse pups according to
published protocols [17] with minor modifications. In
brief, whole brains were isolated, minced, and placed in
ice-cold dissociation media containing sterile filtered
DNasel (1 pL/mL, Invitrogen, Carlsbad, CA, USA),
Dispase II (1.2 U/mL, Roche, Indianapolis, IN, USA), and
Papain (1 mg/mL, Sigma-Aldrich, St. Louis, MO, USA)
dissolved in DMEM/F12 (Sigma-Aldrich, St. Louis, MO,
USA). Cells were dissociated for 10 min at 37°C with agi-
tation every few minutes. After mechanical and chemical
dissociation, the population of mixed glial cells was fil-
tered through a 40 pm-pore filter (BD Falcon, Franklin
Lakes, NJ, USA) and plated on T75 flasks in DMEM/F12
supplemented with 20% heat-inactivated fetal bovine
serum (FBS, Sigma-Aldrich, St. Louis, MO, USA), 1%
penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO,
USA), and 1% L-glutamine (Sigma-Aldrich, St. Louis,
MO, USA). Mixed glial cultures were maintained in cul-
ture in a humidified incubator at 37°C and 5% CO, for
14 to 16 days and media were replenished every 3 to
4 days. Once cultures reached confluence, primary
microglial cells were isolated from the astroglial cell bed
by mechanical agitation on an orbital shaker (150 rpm)
for 1 h at 37°C. After isolation, cells were plated in
DMEM/F12 supplemented with 1% penicillin/strepto-
mycin and 1% L-glutamine at a density of 70,000 cells/
well in a four-well chamber slide (LAB-TEK, Rochester,
NY, USA) for immunocytochemistry, ELISA, and multi-
plex assay.

Purified human a-SYN (1 mg/mL, r-Peptide, Athens,
GA, USA) was incubated at 37°C with agitation for
7 days as previously described [18], and pulse sonicated
for 2 s before adding into the primary microglia culture.
In order to determine the aggregated state of the a-SYN
used in these experiments, aliquots of the a-SYN prepar-
ation were separated on Superdex Column into 1 mL
fractions. All fractions were analyzed by western using a
monoclonal antibody (LB509, Abcam, Cambridge, MA,
USA) for human oa-SYN. Western analysis indicated
aggregates of approximately 1 MDa (Additional file 1:
Figure S1). The primary microglia were treated with
500 nM aggregated human a-SYN at different time points.

Immunocytochemistry
Twenty-four, 48, and 72 h after a-SYN treatment, anti-
CD45 and anti-human «o-SYN antibodies were used to
study o-SYN internalization and localization. For exam-
ining NF-«xB activation, we used anti-NF-kB p65 anti-
body and SYTOX Green nucleic acid stain for primary
microglia 24 h and 72 h post treatment.

Cells were fixed with 4% paraformaldehyde, permeabi-
lized with TBS containing 3% gelatin from cold water
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fish skin (Sigma-Aldrich, St. Louis, MO, USA), 1% BSA,
and 0.5% Triton X-100, blocked with TBS containing 3%
gelatin from cold water fish skin and 1% BSA. Primary anti-
body incubations were done for 2 h at room temperature
with primary antibodies diluted in TBS containing antibody
diluent (TBS containing 3% gelatin from cold water fish
skin, 1% BSA, and 0.1% Triton X-100), rat anti-CD45
(1:500, AbD Serotec, Kidlington, UK), mouse anti-human
a-SYN (1:500, Abcam, Cambridge, MA, USA), rabbit anti-
human «a-SYN (1:500, Cell Signaling Technology, Danvers,
MA, USA), rabbit anti-LC3B (1:200, Abcam, Cambridge,
MA, USA), rat anti-LAMP-1 (1:100, DSHB at the University
of Iowa, Iowa City, IA, USA), or goat anti-NF-kB p65
(1:100, Santa Cruz Biotechnology, Santa Cruz, CA, USA)
followed by a 1:500 dilution of alexa-488 conjugated goat
anti-rabbit, goat anti-mouse, donkey anti-rat (Molecular
probes, Eugene, OR, USA), a 1:500 dilution of CY3-
conjugated goat anti-rat, goat anti-rabbit, donkey anti-rabbit,
or donkey anti-goat (Jackson Immunoresearch, West Grove,
PA, USA) antibodies and 0.05 pM SYTOX Green nucleic
acid stain (Invitrogen, Carlsbad, CA, USA). Each experimen-
tal set was repeated two to three times.

Imaging and quantification

Confocal images were captured using a Leica TCS-SP5
laser scanning confocal microscope. The images were
processed using the Leica software and exported as TIFF
files and processed using Adobe Photoshop CS2. For
quantitation of NF-kB p65 staining, the nuclear regions
of the cells were defined using SYTOX Green staining,
and the p65 intensity was determined using region of
interest analysis with Image] software (http://rsbweb.nih.
gov/ij/). Intensity scores obtained from four images per
group (5 to 15 cells in each image) were statistically ana-
lyzed using ¢ test.

ELISA

Conditioned media were collected 2, 4, 8, and 16 h after
the treatment of primary microglia with vehicle or
aggregated human a-SYN. The quantities of MIP-la
were measured with a mouse MIP-1a ELISA kit (R&D
Systems, Minneapolis, MN, USA) per the manufacturer’s
instructions. The quantities of TNF were measured with
a mouse TNF ELISA kit (eBiosciences, San Diego, CA,
USA) per manufacturer’s instructions.

Multiplex assay

Conditioned media were collected 4 h and 24 h after the
treatment of primary microglia with vehicle or aggre-
gated human a-SYN for each of three independent
experiments, and analyzed for mouse cytokine and che-
mokine production on an assay panel with 25 analytes
(G-CSF, GM-CSE, IFN-y, IL-10, IL-12 (p40), IL-12 (p70),
IL-13, IL-15, IL-17, IL-1«, IL-1pB, IL-2, IL-4, IL-5, IL-6,
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IL-7, IL-9, IP-10, KC-like, MCP-1, MIP-1a, MIP-1,
MIP-2, RANTES, TNF-a) per the manufacturer’s
instructions (Millipore, Billerica, MA, USA).

Results

Internalization of aggregated human a-SYN by mouse
primary microglia

Internalization of aggregated a-SYN was studied 24, 48,
and 72 h after the treatment of mouse primary microglia
in vitro. Staining for a-SYN was performed using an
anti-human o-SYN specific antibody, together with the
microglial marker CD45. In microglia from wild-type
animals, there was o-SYN internalization as early as
24 h, and we observed large dense a-SYN aggregates
within the microglia at 72 h (Figure 1A-H). In general,
most microglia contained a single dense aggregate. In
microglia derived from FcyR™~ animals, there was also
uptake of the exogenous aggregated human a-SYN, but
the pattern of intracellular localization was different. Ra-
ther than a single large aggregate, the intracellular a-SYN
in the FcyR™~ microglia was dispersed into a large num-
ber of smaller punctate areas of staining. In addition, the
intensity of the staining for CD45 was reduced in both ve-
hicle and a-SYN-treated FcyR™'~ primary microglia.

To identify the compartments containing «-SYN in the
treated microglia, we performed double staining for a-SYN
and LC3B, a marker for autophagosomes. At 24 h post
treatment, we observed clear co-localization of «-SYN and
LC3B within the aggregates in WT primary microglia but
not in FcyR™~ microglia (Figure 1I). This result suggests
that in WT microglia, the internalized a-SYN is indeed tar-
geted to autophagosomes, while in the FcyR™/~ microglia it
appears to be trafficked to a set of distinct compartments.

Aggregated human a-SYN triggers NF-kB activation with
nuclear accumulation of p65 protein in microglia

WT mouse primary microglia were treated with either ve-
hicle or 500 nM aggregated human a-SYN for 24 h and
72 h, and immunocytochemistry for NF-kB p65 protein
was performed to evaluate NF-«B activation in vitro. The
cells were stained with SYTOX Green to show the nu-
cleus. Both at 24 h and 72 h, a-SYN-treated microglia
exhibited increased immunoreactivity for NF-kB p65, and
the nuclear accumulation of NF-kB p65 was quite distinct
compared with the vehicle treated cells (Figure 2A). In
order to quantify the intensity of nuclear NF-kB p65, at
least four images from each group were analyzed using
Image] software. The nucleus was circled for ROI selec-
tion in the SYTOX Green/NF-kB p65 double staining
images, and the nuclear NF-«B p65 intensity was obtained
under the NF-kB p65 single channel images. This analysis
confirmed the impression of markedly enhanced nu-
clear NF-kB p65 staining in the a-SYN-treated WT
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WT Vehicle

aSYN LC3B

Figure 1 a-SYN internalization in WT and FcyR™'~ mouse primary microglia. (A-H) 72 h after the treatment of aggregated human a-SYN,
WT and FcyR™™ mouse primary microglia were immunostained for human a-SYN (Green) and the microglial marker CD45 (Red). Condensed
a-SYN was observed in the WT microglia. In FcyR™ ™ microglia, there was still uptake of aggregated human a-SYN but the pattern of intracellular
a-SYN was quite different, with diffuse labeling of small puncta throughout the cytoplasm. Scale bars: panel A, B, E, F bar=50 um; panel C, D, G
H bar=20 um. Image 1 in Panels D and H are confocal images of WT and FcyR™~ mouse primary microglia treated with aggregated human
a-SYN, respectively; 2 and 3 in Panel D and H are transverse and lengthwise images of z-stack series of the indicated cells. (I) 24 h after the
treatment of aggregated human a-SYN, WT and FcyR™~ mouse primary microglia were immunostained for human a-SYN (Green) and

autophagosomal marker LC3B (Red). a-SYN co-localized with LC3B in WT but not FcyR™ ™ microglia. Phase contrast images show the morphology
of the cell. Scale bar=10 um.
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Figure 2 a-SYN-induced NF-kB activation in WT mouse primary microglia. (A) 24 h and 72 h after the treatment of either vehicle or 500 nM
aggregated human a-SYN, cells were stained for NF-kB p65 protein (Red) and SYTOX Green to show the nucleus. At both time points,
a-SYN-treated microglia exhibited increased immunoreactivity for NF-kB p65, and the nuclear accumulation of NF-kB p65 was quite distinct
compared with the vehicle treated ones. Scale bar=40 um. Arrows indicate the enrichment of nuclear NF-kB p65. (B, C) Quantification of 24 h
and 72 h nuclear NF-kB p65 intensity. At least four images from each group were analyzed using ImageJ software. At both time points
a-SYN-treated WT microglia had markedly enhanced nuclear NF-kB p65 staining compared with the vehicle-treated controls. *P<0.05,

a-SYN vs. vehicle, t-test.
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microglia compared to the vehicle-treated controls
(Figure 2B and C).

FcyR™™ blocks a-SYN-induced nuclear NF-kB p65
accumulation in microglia

We performed the same SYTOX Green/NF-kB p65
double staining for vehicle and a-SYN-treated FcyR™'~
microglia 24 h and 72 h post treatment, and did the same
quantification using Image]. Compared with WT micro-
glia, vehicle-treated FcyR™~ microglia showed a striking
increase in nuclear p65 at baseline with intense staining of
the nucleus at 24 h (Figure 3A), and this effect was not
seen at 72 h (data not shown). This is of interest because
it parallels the striking increase in nuclear p65 we have
previously reported in the FcyR™~ mice in vivo [15]. After
treatment of FcyR™~ microglia with aggregated a-SYN,
the nuclear prominence of p65 staining was still evident,
but quantification of the intensities demonstrated that the
nuclear p65 decreased, rather than increased, 24 h after o-
SYN treatment (Figure 3B) and there was no significant
difference in staining intensity at 72 h (data not shown).
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FcyR™™ attenuates a-SYN-induced NF-kB signaling and
downstream expression of pro-inflammatory molecules
In order to investigate the effect of Fc gamma chain dele-
tion on the NF-kB signaling and the production of cyto-
kines/chemokines regulated by NF-«B, we performed
ELISA and multiplexed assay on the conditioned media
collected from the vehicle and «-SYN-treated primary
microglia.

MIP-1a (Macrophage inflammatory protein-la) is a
marker for microglial activation and a target gene regu-
lated by NF-«B [19], therefore we used it to characterize
the time course of the effect of aggregated human a-SYN
on pro-inflammatory molecules downstream of NF-«B.
Conditioned media were collected 2, 4, 8, and 16 h post a-
SYN treatment of WT microglia and were analyzed for
MIP-1a ELISA. The MIP-1a level peaked at 4 h after the
human a-SYN treatment (Figure 4A). Since a-SYN trig-
gered nuclear p65 enrichment in WT microglia but not
FcyR™/~ microglia at 24 h, we chose 4 h and 24 h as the
time points for multiplex assay.

Conditioned media were collected 4 h and 24 h after the
treatment of WT and FcyR™'~ microglia with either vehicle
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Figure 3 a-SYN-induced NF-kB activation was blocked in FcyR™~ mouse primary microglia. (A) 24 h after treatment with either vehicle or
500 nM aggregated human a-SYN, FcyR™~ microglia were stained for NF-kB p65 protein (Red) and SYTOX Green. a-SYN-treated microglia
exhibited attenuated immunoreactivity for NF-kB p65 compared with the vehicle-treated ones. Scale bar=40 um. (B) Quantification of 24 h
nuclear NF-kB p65 intensity. After the treatment of a-SYN, FcyR™ ™ microglia had a significant decrease in nuclear p65. **P<0.01, a-SYN vs. vehicle,

t-test.
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Figure 4 FcyR™™ attenuated a-SYN-induced NF-kB signaling and downstream expression of pro-inflammatory molecules. (A) MIP-1a
ELISA on the conditioned media collected 2, 4, 8, and 16 h from the vehicle and a-SYN-treated WT primary microglia. At 4 h, but not the other
time points, the MIP-1a level was significantly increased with a-SYN treatment compared with the vehicle controls. *P<0.05, a-SYN vs. vehicle,
t-test. (B) Conditioned media were collected 4 h and 24 h after the treatment of vehicle or aggregated human a-SYN on WT and FcyR™~
microglia for a 25-plex mouse cytokine/chemokine assay. At 4 h, MIP-1a and MIP-13 were significantly increased with a-SYN treatment in WT
microglia but not FcyR™™ microglia compared with vehicle-treated ones. All chemokine expression levels were normalized to the level of vehicle-
treated WT or FcyR™™ microglia, respectively. ***P <0.001 WT a-SYN vs. WT vehicle. One-way ANOVA with Tukey's multiple comparison test.
(C) Conditioned media collected from primary WT and FcyR™™ microglia treated overnight with 100 ng/mL LPS. Both WT and FcyR™™ microglia
respond normally to TLR4 stimulation. TNF expression levels were normalized to the level of vehicle-treated WT or FcyR™~ microglia, respectively.
#%p 20001 WT LPS vs. WT vehicle, FeyR™~ LPS vs. FcyR™~ vehicle. One-way ANOVA with Tukey's multiple comparison test.

or aggregated human a-SYN, and studied using a 25-plex ~ TNF-a or IL-6 were not detectable (< 10 pg/mL) in the
mouse cytokine/chemokine assay. To our surprise, there = multiplex assay (Table 1). At 4 h, MIP-1a and MIP-1p were
was only a limited cytokine response, with detectable significantly increased with a-SYN treatment in WT
levels of IL-1a, IP-10, MIP-1a, MIP-13, MIP-2, MCP-1 at  microglia compared with vehicle-treated cells, nevertheless,
4 h and 24 h. Other pro-inflammatory cytokines such as  this increase was not observed in a-SYN-treated FcyR ™/~
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Table 1 Effects of FcyR—/— on a-SYN-induced pro-inflammatory molecules
Fold 4 h 24 h

WT vehicle ~ WT a-SYN  FcyR”” vehicle  FcyR”~ a-SYN  WT vehicle =~ WT a-SYN  FcyR™~ vehicle  FcyR™™ a-SYN
IL-Ta 1.00+£048 3324245 1.00+0.21 0.55+0.22 1.00+0.17 1.05+0.23 1.00+£0.20 1.03+042
IP-10 1.00+£0.21 5294293 1.00+041 0.79+0.38 1.00+0.23 1.01+0.34 1.00+£0.07 1.79+042
MIP-Ta 1.00£0.21 33540617 1.00+£0.11 097+0.39 1.00+0.09 1.29+0.35 1.00+£0.31 2.07+0.93
MIP-13 1.00+0.23 4.54+0.56° 1.00£0.15 1.194+045 1.00+0.08 1.26+0.38 1.00+0.46 2914155
MIP-2 nd 1.00+0.20 1.37+0.21 1.00+0.46 1.40+0.75
MCP-1 nd 1.00+0.12 1.24+0.37 1.00+£0.31 1.88+1.10

Conditioned media were collected 4 h and 24 h after the treatment of vehicle or aggregated human a-SYN on WT and FcyR™~ microglia for a 25-plex mouse
cytokine/chemokine assay. At 4 h, MIP-1a and MIP-1B were significantly increased with a-SYN treatment in WT microglia but not FcyR™~ microglia compared with
vehicle-treated ones. All cytokine and chemokine expression levels were normalized to the level of vehicle-treated WT or FcyR™~ microglia, respectively.

P <0.001 WT a-SYN vs. WT vehicle. ANOVA with Tukey’s multiple comparison test. nd, not detectable.

microglia (Figure 4B). To determine if FcyR™~ microglia
can respond normally to pathogen associated molecular
patterns (PAMPs) involved in the NF-kB-dependent pro-
inflammatory response, primary WT and FcyR’/ ~ micro-
glia were plated and treated overnight with 100 ng/mL
lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4)
specific ligand. Conditioned media were collected and
analyzed for TNF expression by ELISA. Following LPS
treatment, we found no difference in amount of TLR4-
specific TNF induction between the WT and FcyR™'~
microglia (Figure 4C) indicating that FcyR™~ microglia
can respond normally to pro-inflammatory stimuli.

Discussion

Our studies have shown that aggregated a-SYN can interact
directly with microglia, and can be internalized and con-
densed within these cells. With a-SYN treatment, there is
enrichment of the NF-kB component p65 in the nucleus of
microglia. Meanwhile, downstream chemokines regulated
by NF-«B including MIP-1a and MIP-1p show increased
expression levels. Deficiency of gamma chain subunit of the
Fc receptors alters the pattern of internalized a-SYN so that
it is no longer condensed in autophagosomes. It prevents
microglial nuclear p65 accumulation, and blocks a-SYN-
induced changes in chemokine expression.

In the mouse, the classic FcyRs are well characterized
and include FcyRI, FcyRIIB, and FcyRIIL Both FcyRI and
FcyRIII are multi-chain complexes composed of a single
ligand-binding «-chain and a homodimer of common
gamma-chains that mediates intracellular signaling
through an immuno-receptor tyrosine-based activation
motif (ITAM) in the cytoplasmic domain [20]. The FcyR™"~
mice that we used in our studies are deficient in the
gamma chain subunit of the Fc receptors, therefore the
functional expression of FcyRI and FcyRIII is greatly
diminished, and the activated FcyR™'~ microglia lack the
ability to phagocytose antibody-coated particles even with
the retention of FcyRIIB [16]. Thus, although our data
clearly implicate receptors containing the Fc gamma chain,
they do not allow us to distinguish between -effects

mediated by FcyRI or FcyRIII, and it is possible that either,
both, or additional scavenger receptors are involved in the
a-SYN-induced neuroinflammation.

We have previously characterized the responses to a-
SYN in vivo using an AAV-synuclein mouse model of PD
[15]. We found that with the targeted overexpression of
human a-SYN in the SN of WT mice, there is microglial
activation and marked accumulation of p65 protein in the
nucleus of microglia, and downstream activation of NF-
KkB-driven pro-inflammatory mediators can be detected. In
FcyR™~ mice, microglial nuclear p65 accumulation and
transcriptional induction of the pro-inflammatory media-
tors in response to overexpression of a-SYN are blocked
in vivo. Moreover, a-SYN-trigged dopaminergic neurode-
generation is attenuated. Our in vitro studies are consist-
ent with these in vivo results, showing that excess a-SYN
leads to microglial NF-kB activation and downstream pro-
inflammatory signaling, and the gamma chain subunit of
the Fc receptors is essential for this process. We also have
observed both in vivo and in vitro that the FcyR™~ mice
have much greater baseline abundance of nuclear p65
(Figure 3). Both in vivo and in vitro, we have found that
a-SYN induces a marked enhancement of nuclear p65 and
activates NF-«kB signaling, while in the absence of Fc
gamma chain, a-SYN leads to a modest reduction in nu-
clear p65 (which is elevated at baseline) and does not trig-
ger expression of NF-kB-dependent transcripts.

Using the in vitro approach, we have been able to in-
vestigate directly the interaction between aggregated o-
SYN and microglia. We have found that a-SYN is inter-
nalized by microglia and concentrated in autophago-
somes. As this a-SYN internalization occurs in the
absence of any antibody mediation, this must represent
a form of IgG-independent phagocytosis. The process of
IgG-independent phagocytosis plays a critical role in
the early response to infection, and is an important part
of the innate immune system [21]. IgG-independent
phagocytosis can be triggered by several different mole-
cules expressed on the cell surface, such as scavenger
receptors and complement receptors [21,22]. IgG-
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independent phagocytosis has been previously reported
with a-SYN [23], and can also be mediated by FcyRs
through interaction with alternative ligands including
complement receptors and c-reactive proteins [12-14]. A
recent study in Alzheimer’s disease showed that comple-
ment receptor type 3 (CR3), which is a receptor for
soluble FcyRIII, contributes to the phagocytosis and clear-
ance of fibrillar A by microglia, and the internalized A
is transported to lysosomes in microglia [12,24].

Internalization of a-SYN was observed in both WT and
FcyR™'~ microglia, but the intracellular destinations of the
internalized protein were different. In WT microglia,
a-SYN is trafficked to autophagosomes, as demonstrated
by the co-localization with LC3. This is consistent with
earlier work showing autophagocytic protein is localized
in Lewy bodies [25], and that the engagement of FcyRs
during phagocytosis induces recruitment of the autophagy
protein LC3 to phagosomes [26]. In the FcyR™~ microglia
with deficiency of the gamma chain subunit of Fc recep-
tors, however, the pattern of a-SYN internalization is
altered, with a much more diffuse localization. In an effort
to identify the compartments with a-SYN staining in the
FcyR™™ microglia, we performed double staining for
a-SYN and lysosomal marker LAMP-1 but did not ob-
serve evidence for co-localization in either WT or FcyR™/~
microglia (data not shown). While the location of a-SYN
in the FcyR™~ microglia is uncertain, it is possible that it
still involves Fc receptors. Deletion of the gamma chain
results in complete loss of FcyRIII function and marked
reduction of FcyRI, while FcyRII receptors are unaffected.
There are previous studies suggesting that FcyRII may tar-
get proteins to recycling pathways, and it is possible that a
similar process is at work in the gamma chain deficient
microglia [27].

Although we did observe a direct effect of aggregated
a-SYN on NF-kB-mediated chemokine expression, the ex-
tent of this response was limited and pro-inflammatory
cytokines like TNF-a or IL-6 were not detectable at both
4 h and 24 h in the multiplex assay. This differs somewhat
from prior studies in which a broader cytokine and chemo-
kine response has been observed in vitro. These differences
may arise in part because of the antigen employed; most
prior studies used with mutant or nitrated o-SYN [28,29],
or very high concentrations of wild-type a-SYN (up to
10 uM [30]). On the other hand, in our in vivo studies in
the AAV-synuclein mouse model of PD, we did find a broad
pattern of cytokine induction, with significant increases in
the expression level of TNF-q, IL-6, and IL-1a [11]. The dif-
ferences between the in vitro and in vivo responses point to
the possibility that the microglial response may not be en-
tirely cell-autonomous, and may require interactions with
other cell types including T cell populations, which are
known to be present in the brain in both the AAV model of
PD as well as in the human disease [5,11].
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Conclusions

In summary, our data provide evidence that a-SYN
can interact directly with microglia to induce pro-
inflammatory signaling, and FcyR proteins mediate a-SYN
intracellular trafficking and pro-inflammatory signaling.
Therefore, inhibition of either FcyR signaling or down-
stream NF-kB activation may be viable therapeutic strat-
egies to slow or prevent the progression of human PD.

Additional file

Additional file 1: Figure S1. o-SYN preparation and aggregation. (A)
Human a-SYN recombinant protein was purchased and resuspended at a
concentration of 1 mg/mL and aggregated by heat and agitation for 1
week. a-SYN fractions were separated on Superdex columns and
analyzed by western. Fractions 6 to 10 were combined and concentrated.
Western analysis indicated aggregates of about 1 MDa.
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