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Abstract

control subjects.

lesions of patients with MS.

Background: Alkaline phosphatase (AP) is a ubiquitously expressed enzyme which can neutralize endotoxin as well as
adenosine triphosphate (ATP), an endogenous danger signal released during brain injury. In this study we assessed a
potential therapeutic role for AP in inhibiting neuroinflammation using three complementary approaches.

Methods: Mice were immunized to induce experimental autoimmune encephalomyelitis (EAE) and treated with AP for
seven days during different phases of disease. In addition, serological assays to determine AP activity, endotoxin levels
and endotoxin-reactive antibodies were performed in a cohort of multiple sclerosis (MS) patients and controls. Finally,
the expression of AP and related enzymes CD39 and CD73 was investigated in brain tissue from MS patients and

Results: AP administration during the priming phase, but not during later stages, of EAE significantly reduced
neurological signs. This was accompanied by reduced proliferation of splenocytes to the immunogen, myelin
oligodendrocyte glycoprotein peptide. In MS patients, AP activity and isoenzyme distribution were similar to controls.
Although endotoxin-reactive IgM was reduced in primary-progressive MS patients, plasma endotoxin levels were not
different between groups. Finally, unlike AP and CD73, CD39 was highly upregulated on microglia in white matter

Conclusions: Our findings demonstrate that: 1) pre-symptomatic AP treatment reduces neurological signs of EAE; 2)
MS patients do not have altered circulating levels of AP or endotoxin; and 3) the expression of the AP-like enzyme
CD39 is increased on microglia in white matter lesions of MS patients.

Keywords: Autoimmunity, Neuroimmunology, Lipopolysaccharide (LPS), Purinergic signalling, Multiple sclerosis

Background

Inflammatory and neurodegenerative responses in the
central nervous system (CNS) are strongly affected by
infections that occur in the periphery [1]. This is clinically
illustrated by the fact that infections are an important risk
factor for the development of relapses in multiple sclerosis
(MS) [2,3]. In addition, infections may enhance the seve-
rity and/or duration of clinical exacerbations. Evidence
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from experimental models also demonstrates that sys-
temic administration of bacterial compounds such as LPS
or staphylococcal enterotoxin induces clinical relapses in
mice recovered from experimental autoimmune enceph-
alomyelitis (EAE) [4,5]. Infections may cause activation of
autoreactive lymphocytes in the periphery in a non-specific
manner [5,6]. Alternatively, bacterial compounds when
released into the bloodstream may increase blood—brain
barrier permeability [7], subsequently activating microglia,
which secrete proinflammatory cytokines promoting neu-
rodegeneration [8]. Recent studies further demonstrate that
manipulation of the normal gut microbiota by antibiotics,
germ-free conditions and administration of Bacteroides
fragilis polysaccharides affects EAE incidence and severity
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[9-11]. It is conceivable that both exogenous (LPS) and
endogenous phosphorylated compounds such as adenosine
triphosphate (ATP) at least partly mediate these effects.
Together, these findings suggest that patients with MS may
benefit from an early control of infections and neu-
tralization of microbial compounds of normal gut flora.

A promising strategy for the neutralization of bacterial
endotoxin and pro-inflammatory extracellular nucleo-
tides is treatment with alkaline phosphatase (AP), an en-
zyme ubiquitously expressed in mammalian tissues and
present in body fluids. AP hydrolyzes the diphosphoryl
lipid A moiety of LPS, generating the non-toxic mono-
phosphoryl lipid A [12]. Endogenous AP plays a role in
the defense against Gram-negative bacteria [13] and is
pivotal for normal gut homeostasis [14,15]. AP has bene-
ficial effects in several animal models of inflammatory
diseases, including sepsis, inflammatory bowel disease
and colitis [16-18].

In addition to detoxification of exogenous compounds,
such as LPS and bacterial CpG [19], AP also deactivates
endogenous molecules such as ATP, which serves as an
immunological danger signal when present at high con-
centrations (>100 uM) in the extracellular space [20].
ATP, produced by bacteria and released in large concen-
trations from damaged cells, is sensed by purinergic P2
receptors [21]. In the intestinal lamina propria, ATP is
critical for the differentiation of Th17 cells [22].

CD39 and CD73 are two other enzymes that are
involved in ATP metabolism, thus having overlapping
functions with AP. CD39, like AP, mediates the conver-
sion of ATP via ADP to AMP. CD73 and AP both con-
vert AMP into adenosine. The two enzymes are
expressed by regulatory T cells (Treg) and are crucial for
the immunosuppressive function of Treg by decreasing
local ATP concentrations and increasing the immuno-
suppressive adenosine [23]. In addition, CD73 expre-
ssion and adenosine signalling is pivotal for leukocyte
entry into the CNS of mice with EAE [24].

Because infections often precede MS relapses and
given that AP detoxifies endogenous and exogenous
innate activating signals, we hypothesize that AP has a
beneficial role in limiting neuroinflammation in MS. In
this study we therefore aimed to: 1) determine the
prophylactic and therapeutic potential of AP in EAE, a
mouse model of MS; 2) determine plasma AP levels in
MS patients in relation to endotoxin exposure; and 3)
assess the expression and cellular sources of AP in rela-
tion to CD39 and CD73 in MS brain tissue.

Methods

EAE induction and AP treatment

Ten-week old female C57BL/6 mice (Harlan) were
immunized with 50 ug MOG35-55 peptide (Peplogic,
London, UK) emulsified in complete Freund’s adjuvant
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(CFA; Difco Laboratories, Detroit, MI, USA). Animals
were injected s.c. with a total of 200 pl adjuvant divided
over four ventral sites in the axillary and inguinal
regions. Pertussis toxin (100 ng/mouse; Sigma-Aldrich,
Zwijndrecht, The Netherlands) was given ip. on day 0
and 2. AP (Biozyme Laboratories, Blaenavon, Gwent,
UK) was injected i.p. (5 U/mouse/day) during the diffe-
rent phases of EAE, that is, the priming phase (day 0 to
6), the onset of clinical signs (day 7 to 13) or the plateau
phase (day 14 to 20). Bovine intestinal AP (Biozyme
Laboratories, Gwent, UK) or control diluent (50% gly-
cerol, 5 mM Tris, 5 mM MgCl, 0.1 mM ZnCl, at pH
7.0) were diluted prior to use in 0.9% NaCl. Mice were
treated for a maximum of seven days in order to prevent
the occurrence of serum sickness. Mice were weighed
and scored for clinical signs daily as follows: 0, no di-
sease; 1, tail paralysis; 2, paraparesis; 3, partial limb pa-
ralysis; 4, complete limb paralysis; 5, moribund. Animals
exhibiting signs that were less severe than typically
observed for the standard score were scored 0.5 less
than the indicated grade. The scoring was performed by
investigators who were blinded to treatment assignment.
The animal experiments were approved by the animal
ethical committee and performed according to local and
national guidelines for animal experimentation. The
group sizes (n = 10) were calculated by power analysis in
order to reach significance with an EAE score difference
of one grade using a standard deviation of 0.8, power of
80% and a significance level of 0.05.

T-cell proliferation assay

Spleens were isolated on day 28 after EAE induction. A
single-cell suspension was prepared and erythrocytes
were lysed by incubating with Gey’s reagent for 5 mi-
nutes. Cells were washed and seeded at 4 x 10° cells/well
in Iscove’s modified Dulbecco’s medium (IMDM) su-
pplemented with 2% normal mouse serum, 100 U/ml
penicillin, 100 pg/ml streptomycin and 2 mM glutamine
(all from Lonza, BioWittaker, Verviers, Belgium).
MOG35-55 peptide was added at 0.1, 1 or 10 pg/ml and
phytohemagglutinin (PHA) was used at 10 pg/ml as
positive control. After three days, [*H]-thymidine was
added at 0.5 uCi/well for the last 18 hours. Proliferation
was measured using a [-counter (Wallac MicroBeta,
PerkinElmer, Waltham, MA, USA) and expressed as
mean counts per minute (cpm).

ELISA

Supernatants of mouse splenocyte cultures were co-
llected on day three after in vitro stimulation and
assessed for cytokine content using ELISA Kkits for IFN-
Y, tumor necrosis factor o (TNF-a) (both from BD
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Biosciences, Breda, The Netherlands) and IL-17A (R&D,
Abingdon, UK).

Patients and controls

Patients (n = 26; detailed in Table 1) were selected based
on a diagnosis of clinically definite MS according to the
McDonald criteria [25]. Patients were not treated with
immunomodulatory compounds at the time of blood
sampling. The control groups consisted of healthy sub-
jects (n = 18; anonymized laboratory co-workers) and
patients with other non-inflammatory and non-
infectious neurological diseases (n = 11). Sera of patients
and controls were collected at the outpatient clinic of
Neurology at the Erasmus MC, and stored at —80°C until
use. The study was approved by the Medical Ethical
Committee of the Erasmus MC and written informed
consent was obtained from patients and controls who
participated in this study.

Serological assays

Total AP activity was measured by a routine enzymatic
assay according to the recommendations of the Inter-
national Federation of Clinical Chemistry and using a
Cobas 6000 automated analyzer (Roche Diagnostics,
Almere, The Netherlands). Liver, bone, intestine, pla-
centa and bile AP iso-enzymes were separated by aga-
rose gel electrophoresis using wheat germ agglutinin.
Bands were quantified using densitometry. All measure-
ments were performed in the accredited Department of
Clinical Chemistry of the Erasmus MC by qualified
personnel blinded to sample identity. Plasma endotoxin
levels were measured using the chromogenic Limulus
Amebocyte Lysate (LAL) endpoint assay (Lonza), according

Table 1 Clinical characteristics of patients and controls

Page 3 of 13

to the manufacturers’ procedures. The assay was strictly
controlled by a series of practical measures including the
use of automatic pipets to minimize time differences be-
tween wells. Endotoxin-reactive IgM and IgG antibodies in
sera of MS patients and control subjects were measured
using the EndoCab ELISA (Hycult Biotechnology, Uden,
The Netherlands).

Enzyme histochemistry and immunohistochemistry
Post-mortem brain material of five prototypical patients
with clinically definite MS and four non-demented con-
trols (Table 2) was obtained from The Netherlands Brain
Bank, Netherlands Institute for Neuroscience, Amsterdam.
All material was collected from donors from whom writ-
ten informed consent for brain autopsy and the use of the
material and clinical information for research purposes
had been obtained by the Netherlands Brain Bank.

Frozen sections were fixed with acetone/0.05% H,O, for
10 minutes and stained for endogenous AP activity using
naphthol-AS-MX-phosphate and Fast Blue BB base
(Sigma-Aldrich), resulting in a blue precipitate. Sections
were subsequently incubated with 10% normal goat serum
and 5% normal human serum in PBS/0.1% BSA for 30
minutes. The primary antibodies anti-CD39 (clone BU61;
Ancell Corporation, Bayport, MN, USA), anti-CD73
(clone 4G4; Hycult Biotechnology), anti-MOG (18-18-C5)
and anti-HLA-DR (clone L243; BD Biosciences) were
allowed to bind overnight at 4°C. After washing, sections
were incubated with biotinylated goat anti-mouse IgG1l
(Southern Biotechnology Associates, Birmingham, AL,
USA) in PBS/1% BSA/1% normal human serum for 45
minutes at room temperature and with avidin-biotin com-
plexes (Vector Laboratories, Peterborough, UK) for 30

HC

(number = 18)

MS OND

(number = 11)

(number = 26)

Age at onset (SD) NA 37 (12) NA
Age at sampling (SD; range) 37 (12; 21 to 59) Total MS: 41 (12; 19 to 59) 39 (13; 20 to 57)
RR-MS: 34 (11; 19 to 59)
PP-MS: 46 (9; 31 to 58)
Female (%) 78 73 45
Disease duration, years (SD) NA 3(1)? NA
Presenting symptoms (number)
Optic nerve 2
Spinal cord NA 16 NA
Brainstem/cerebellum 3
Cerebrum 5
Raised IgG-index or oligoclonal bands (number) NA 18/23 NA

At sampling, five patients were still clinically isolated syndrome (CIS) patients. Of these patients, four developed RR-MS after sampling. One CIS patient was at high risk
for developing MS (fulfilment of the Barkhof criteria on MRI and oligoclonal bands and raised IgG-index in the CSF) and was followed for seven years without new
neurological complaints. CSF, cerebrospinal fluid; HC, healthy controls; IgG, immunoglobulin G; MRI, magnetic resonance imaging; MS, multiple sclerosis; OND, other
neurological disease; PP-MS, primary progressive MS; RR-MS, relapsing-remitting MS; SD, standard deviation.
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Table 2 Clinical characteristics of patients included for postmortem studies

Patient Gender Age at death (years) Disease duration (years) MS disease form Cause of death

NDC1 Male 73 NA NA Colon carcinoma with liver metastases
NDC2 Female 90 NA NA Unknown

NDC3 Female 68 NA NA Metastasized mamma carcinoma

NDC4 Male 84 NA NA Heart failure by uremia

MS1 Female 41 11 SP Natural death

MS2 Female 50 17 Chronic progressive Euthanasia

MS3 Female 55 21 SP Possible CVA

MS4 Male 64 34 PP End-stage progressive MS

MS5 Female 76 34 SP Respiratory insufficiency of unknown origin

CVA, cerebrovascular accident; MS, multiple sclerosis; NA, not applicable; PP, primary progressive; SP, secondary progressive.

minutes. For double staining with HLA-DR, sections were
incubated with alkaline phosphatase-conjugated goat anti-
mouse IgG2a. Bound complexes were visualized with
3-amino-9-ethylcarbazole (AEC) resulting in a translucent
red product. HLA-DR in double stainings was revealed
using naphthol-AS-MX-phosphate and Fast Blue BB base
in the presence of 1.5 mM levamisole (Sigma-Aldrich), to
inhibit endogenous AP. Aspecific binding was evaluated
by replacing primary antibodies with isotype-matched
control antibodies.

Statistical analysis

Data were analyzed using Graphpad prism software or
SPSS using parametric or non-parametric tests as appro-
priate and P <0.05 was considered statistically significant.

Results

Pre-symptomatic treatment with alkaline phosphatase
reduces EAE severity

To investigate whether AP modulates the EAE disease
course, we induced chronic EAE in C57BL/6 mice using a
group size of 9 to 10 animals per group and treated mice
with AP at different stages of disease, that is, during the
priming phase (day O to 6), the onset of clinical signs
(day 7 to 13) or during the plateau phase (day 14 to 20).
Mice were treated with 5 U AP/day (approximately 100x
baseline level of AP) which is similar to other experimen-
tal studies.

AP treatment of MOG35-55-immunized mice during
the priming phase did not affect disease incidence,
which was 100% in the control group and 90% in the
AP-treated group. Also, the onset of clinical signs was
comparable between the groups, 10.7 + 0.2 days in the
control group versus 12.2 + 0.9 days in the AP-treated
group (P = 0.27, Mann—Whitney U test). However, ani-
mals treated with AP experienced less severe signs of
EAE which was most pronounced at the peak of the

disease, that is, day 12 to 14 post-immunization, as
reflected by a significant decrease in mean clinical score
at day 13 from 3.4 + 0.2 in the control group to 1.7 + 0.5
in the AP-treated group (P = 0.029, Mann—Whitney U
test; Figure 1A). Accordingly, the cumulative EAE score
was significantly reduced in AP-treated animals as com-
pared to vehicle-treated animals (P = 0.016, Mann
Whitney U test; Figure 1D). When animals were treated at
later time points, that is, from day 7 to day 13 or from day
14 to day 20, no differences were observed in clinical EAE
scores (Figure 1B-D).

Treatment with alkaline phosphatase reduces T-cell
proliferation to MOG35-55

To determine whether mice with reduced clinical signs
due to early AP treatment showed decreased immune
responses to the immunogen MOG35-55, splenocytes
were isolated at 28 days after immunization and assessed
for proliferative capacity by the [*H]-thymidine incor-
poration assay (nine mice per group). No difference was
observed in basal splenocyte proliferation (680 + 150 for
the control group and 870 + 193 for AP-treated animals)
or in PHA-induced proliferation (1,923 + 445 for the
control group and 2,121 + 330 for AP-treated animals)
although it must be noted that the peak of PHA-induced
proliferation is already after one day of culture. However,
mice treated with AP had a modest but significant
reduction in antigen-specific proliferation. Splenocytes
from control animals cultured in the presence of 1
pg/ml MOG35-55 showed a stimulation index (SI) of 3.4 +
0.2 while splenocytes from AP-treated animals had a
stimulation index of 2.3 + 0.3 (P <0.017; Mann Whitney U
test; Figure 2A). Splenocytes cultured in vitro produced
IEN-y and IL-17A in response to MOG35-55 (Figure 2B
and C). No significant differences in cytokine production
were observed between cells from AP-treated and vehicle-
treated animals, although a consistently lower level of IL-
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17A was produced by splenocytes from AP-treated mice
(P = 0.11, Mann—Whitney U test). Production of TNF-«
was higher in AP-treated animals, although not signifi-
cantly, and was not further upregulated in response to
MOG35-55 (Figure 2D).

To investigate whether AP treatment affects the pri-
ming of auto-reactive T cells, we performed a separate
animal experiment (5 mice per group) and harvested
splenocytes on day 10, before onset of EAE. There was a
trend (P = 0.056) towards decreased proliferation in the
AP-treated group (Figure 2E). Consistent with the
results obtained at day 28, the strongest effect of AP
treatment was observed at a concentration of 1 pg/ml
MOG35-55.

The histopathology of the spinal cord was assessed
28 days after immunization in mice treated pre-
symptomatically with AP or control diluent. All mice,
irrespective of treatment, showed characteristic EAE
lesions in the spinal cord, consisting of activated F4/80"
macrophages, CD3" T cells and B220" B cells. General
microscopic examination showed no striking differences in
the number or size of lesions between the groups.

In summary, we demonstrate that only pre-symptomatic
AP treatment reduces clinical signs of EAE and that
splenocytes of AP-treated mice show reduced proliferation

in response to MOG35-55 with no differences in cyto-
kine profile.

AP in relation to endotoxin exposure in MS and controls
Since AP is important for detoxifying endotoxin, we
determined the total AP activity, the presence of AP iso-
forms, as well as the endotoxin levels in the plasma of
26 patients with MS and 29 controls. Moreover, correla-
tions between total AP activity and endotoxin levels
were examined.

Although a higher AP activity was noted in the plasma
of PP-MS patients (73.0 + 7.7 U/l) compared to RR-MS
patients (51.1 + 4.0 U/l; Figure 3A), subgroup analysis
demonstrated no significant differences (P = 0.075;
Kruskal-Weallis test). Similarly, the relative level of AP
isoforms was comparable between the different sub-
groups (Figure 3B). Within the group of all MS patients
there was a significant correlation between age and total
AP levels (ry = 0.407; P = 0.039; n = 26) which could
account for the observed differences in AP activity be-
tween MS subgroups.

The endotoxin exposure was measured both directly
using a LAL assay and indirectly by determining endo-
toxin core antibodies (Endocab). Endotoxin levels did
not differ between MS patients and control subjects, or
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between RR-MS and PP-MS patients (Figure 3C). A sig-
nificant difference in the level of Endocab IgM was,
however, found between RR-MS and PP-MS patients
(P = 0.024, Bonferroni-corrected Mann—Whitney U test;
Figure 3D). Age was significantly correlated with Endocab
IgM levels (rs = -0.39; P = 0.003; n = 55), which may ac-
count for the observed differences between RR-MS
patients and PP-MS patients. No differences were found
in Endocab IgG levels. Endotoxin levels did not correlate
with Endocab IgM (rs = —0.029; P = 0.83; n = 55). A cor-
relation between AP activity and endotoxin levels was

found in healthy controls (rs = 0.52; P = 0.027) but not in
MS patients (r; = 0.036; P = 0.86).

Differential expression of detoxifying enzymes in MS
lesions

Finally, we determined the activity of endogenous AP in
MS patients (n = 5) and non-demented control brain ti-
ssue (n = 4) using enzyme histochemistry revealing AP
action in acetone-fixed frozen sections. Additionally, the
expression of CD39 and CD73 was determined, as these
molecules have nucleotidase activity similar to AP [30].
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Consistent with its known expression pattern on blood
vessels in the periphery, AP was evident in endothelial
cells of blood vessels (Figure 4). CD39 was also
expressed on blood vessels, similar to AP, both in con-
trol and MS tissue (Figure 4A and B). CD39 expression

on blood vessels was less restricted than AP, as it was
found on both endothelial cells and within the smooth
muscle layer (Figure 4A and B). In contrast to AP, CD73
was not present on cerebral endothelium, but was more
pronounced at the border of the Virchow-Robin space,
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Figure 4 Expression of detoxifying enzymes on blood vessels in MS and control brain tissue. CD39 (red) was expressed on blood vessels
in brain tissues of both non-demented controls (A) and MS patients (B), partly together with AP (blue) at the endothelial lining (resulting in a
purple/black precipitate indicated by the arrow in the inset in A). CD39 was also expressed in the parenchyma on cells with a ramified
morphology, most notably in MS tissue. A CD39 single positive blood vessel is indicated by the open arrow (B). CD73 (red) was also found on
blood vessels from non-demented controls (C) and MS patients (D), but not on endothelial cells that expressed AP (bright blue, arrow in inset).
Instead CD73 reactivity was observed at the border of the Virchow-Robin space, the glia limitans. Open arrows in C indicate AP single positive
blood vessels (bright blue). Magnification 250x. AP, alkaline phosphatase; MS, multiple sclerosis.
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possibly reflecting the glia limitans. CD73 expression on
blood vessels was comparable between MS and control
subjects (Figure 4C and D).

In MS white matter lesions with active demyelination
and inflammation (Figure 5A-C), AP was also expressed
on blood vessels (Figure 5D) and was similar to that of
normal-appearing white matter or control brain tissue. In
contrast, an increased expression of CD39 and CD73 was
observed (Figure 5E and F). CD39 was evident on cells
with a ramified morphology that co-expressed HLA-DR
representing microglia/macrophages (Figure 5G). Of note,
some HLA-DR" cells, especially those located adjacent to
capillaries and in the center of the lesion, did not express
CD39. Within actively demyelinating MS lesions, a punc-
tate staining of CD73 was noted and double labeling with
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HLA-DR showed that CD73-positive staining was loca-
lized within HLA-DR-positive cells (Figure 5H).

Discussion

MS exacerbations are often associated with preceding
infections [2,3]. Moreover, recent experimental studies
demonstrate that exposure to LPS or the commensal
microbiota is necessary for the development of neuroin-
flammatory disease in mice with myelin-reactive T cells
[5,11]. These findings strongly suggest that microbes
play a crucial role in the initiation and propagation of in-
flammatory responses that mediate CNS pathology. This
may occur by activation of autoreactive T cells in the
periphery [5] or through activation of microglia that ini-
tiate inflammatory responses in the brain parenchyma

D39/HLA-DR

Figure 5 Differential expression of detoxifying enzymes in MS lesions. AP, CD39 and CD73 expression is shown in a chronic active MS

Ha-VIH/E2aD

lesion, positive for oil red O (A), lacking reactivity for myelin oligodendrocyte glycoprotein (B) and containing many HLA-DR* cells (C). The grey
matter (border is indicated by dashed line in panels A-D) contains many AP™ blood vessels. CD39 expression is prominent especially at the lesion
border (E) while CD73 (F) is present throughout the lesion. CD39 was expressed on cells with a ramified morphology that co-expressed HLA-DR
(resulting in purple staining indicated by arrows; G). Open arrows indicate CD39 single-positive cells. CD73 (red) was present as punctate staining
in the lesion inside HLA-DR" cells (blue; H). Note that D, G and H lack hematoxylin counterstaining. Magnification 100x (A-F) and 250x (G,H). AP,
alkaline phosphatase; MS, multiple sclerosis.
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activated microglia. AP, alkaline phosphatase; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; LPS,

[31]. In the latter scenario, systemic inflammation leads to
a phenotypic switch of microglia, from anti-inflammatory
to proinflammatory [8,31]. Importantly, preactive MS
lesions, characterized by activated microglia, do not al-
ways develop into demyelinating lesions [32] and it is

tempting to speculate that systemic infections could act as
a driving force of the development of demyelinating
lesions. Irrespective of the mechanism, it can be argued
that MS patients may benefit from neutralization of mi-
crobial compounds and endogenous danger signals as an
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attempt to prevent subsequent propagation of inflamma-
tory responses in the CNS. In this study we hypothesized
a protective role for AP through its potent detoxifying ac-
tivity of LPS and endogenous danger signals, such as ATP.
We demonstrate that pre-symptomatic AP administration
to animals in which autoimmunity to MOG peptide was
induced, resulted in the reduction of clinical signs of EAE.

There are several mechanisms that could explain how
AP treatment resulted in a reduction of clinical severity in
EAE (Figure 6). First, AP may neutralize the LPS present
in the adjuvant and needed for the priming of pathogenic
MOG-reactive T cells. In experimental colitis induced with
dextran sodium sulfate, the LPS-neutralizing activity of
AP is regarded as the principal mode of action [17].
Second, AP may detoxify endogenous substrates, such as
ATP, and hence interfere with CD4" T cell activation, as
ATP was recently shown to provide autocrine signals for
activated T cells [33]. Our finding that splenocytes of
AP-treated mice proliferated less efficiently to MOG-
peptide is in support of both mechanisms. The overall
proliferation capacity of splenocytes was not affected by
in vivo AP treatment; however, it must be noted that the
proliferation to PHA was measured after three days and
not at the optimum of one day.

AP treatment may also act to limit inflammatory
responses in the brain. ATP has been shown to mediate
the microglial response to local brain injury [34] and has
excitotoxic effects on oligodendrocytes [35]. We did not
find a beneficial role for AP treatment (via the i.p. route)
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during the acute or chronic phase of disease. However, it
is still possible that local administration of AP can inter-
fere with microglial activation and oligodendrocyte
death. The lack of clinical improvement after AP admin-
istration during the acute or chronic phase of disease
may also be explained by the fact that the plasma resi-
dence time of the applied bovine AP is relatively short
(in the order of minutes to a maximum of two hours
[16]). Thus, ongoing inflammation is only in-part and
transiently modulated. In contrast, the neutralization of
endotoxin and ATP by the short-acting AP may have
more impact at the onset of inflammation, as observed in
experimental models of inflammatory bowel disease [18].

The treatment efficacy of AP in EAE was moderate,
which is consistent with previous reports on AP therapy
in other experimental immune mediated disorders (su-
mmarized in Table 3). Our finding that only early treat-
ment with AP was able to decrease the clinical severity
of EAE may suggest that the therapeutic potential of AP
for patients with MS remains limited to preventing the
priming of new T-cell responses. Short-term AP treat-
ment may be considered when there is a high risk for a
clinical relapse, for example during infections or when
there is evidence of gut barrier dysfunction that leads to
systemic release of microbial compounds (translocation).
Unlike antibiotics, AP is able to detoxify these microbial
compounds. Likely an AP isoenzyme with more prolonged
plasma activity than the applied bovine intestinal AP (that
is, placental AP) will perform better in this respect.

Table 3 Overview of studies demonstrating a detoxifying role of AP in vivo

Model Duration Inducing agent or Treatment regime Result Reference
of model adjuvant
Acute myocardial 24 hours  None (coronary artery BIAP, 5 U iv. Reduction of IL-6 and MCP-1 by 40%, IL-18 Fiechter
infarction in BALB/ ligation) prophylactic reduced by 30%. No effect on IL-10 etal,
c mice submitted
Colitis in C57BL/6 12 days Dextran sulphate sodium  BIAP orally, 100 U/day Reduction in body weight loss and TNF-a. [18]
mice (DSS) starting four days after ~ Reduced gut leukocyte infiltration and tissue
disease induction damage
Sepsis and lethal £ 24 hours  Live E. coli i.p. Human placental AP, 1.5 Reduction in mortality. [26]
coli infection in U iv.
BALB/c mice
LPS toxicity in 24 and 72 Live E. coli ip. in mice or  BIAP iv, 1.5 U in mice or Increased survival in mice from 20% to 80%. [16]
mice and piglets  hours LPS iv. in piglets (200 ng/  3.000 U in piglets Reduction in TNF-a by 98% in piglets. No toxicity
kg bodyweight) of BIAP 4000 U/day for 28 days
Liver ischemia- 24 hours  None (clamping of BIAP single dose iv. 0.5  Decreased neutrophil influx and tissue damage  [27]
reperfusion in rats hepatic blood vessels) U/g bodyweight
Secondary 72 hours  Endogenous gut BIAP single dose 0.15 U/ Reduced inflammation and hepatocellular and [28]
peritonitis in microbiota (due to cecal g bodyweight pulmonary damage
C57BL/6 mice ligation puncture)
Septic shock in 30 hours  Feces injection i.p. BIAP bolus 60 U/kg and  Reduced IL-6, improved gas exchange and [29]
sheep continuous infusion 20 longer survival
U/kg/h for 15h
MOG35-55 28 days  Complete Freund'’s Presymptomatic BIAP, 5 Reduced clinical signs, reduced T-cell Huizinga
induced EAE in adjuvant and pertussis U/day ip. for 7 days proliferation to immunogen et al. (this
C57BL/6 mice toxin study)

BIAP, bovine intestinal alkaline phosphatase. LPS, lipopolysaccharide; TNFa, tumor necrosis factor a.
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The efficacy of AP has been studied in several human
inflammatory diseases and conditions. AP treatment was
safe [36,37] and was associated with short-term clinical
improvement and reduction of C-reactive protein in ul-
cerative colitis [38]. AP treatment also resulted in more
prominent recovery of creatinine clearance in patients
with sepsis-induced acute kidney injury [37]. The safety
and efficacy of short-term AP treatment is currently
under investigation for acute rheumatoid arthritis (Clini-
calTrials.gov Identifier: NCT01416493). Animal models
in which AP was shown to be effective were mostly
acute conditions, including septic shock, acute myocar-
dial infarction and peritonitis (summarized in Table 3).
However, beneficial effects have also been reported in
chronic colitis [17,39].

We also determined the expression of AP and its related
enzymes CD39 and CD73 in MS brain tissue. The
observed AP expression pattern was largely similar to that
in rodents and primates as reported previously [40,41]. In
contrast to Alzheimer’s disease [42], we did not find
increased AP expression in MS brain compared to con-
trols. It is possible that enzyme histochemistry as used in
this study is less sensitive in detecting differences than
enzyme assays of whole tissue homogenates. CD39 was
predominantly expressed on blood vessel endothelium, as
was AP, and on microglia, which is consistent with an
earlier study [40]. In white matter lesions of MS patients,
CD39 expression was also found on microglia. CD39 may
play a role in the microglial response to inflammation and
tissue damage as it converts extracellular toxic ATP, which
is released upon tissue damage, to ADP and AMP. Not all
HLA-DR" cells co-expressed CD39, especially those that
surrounded capillaries and some cells in the center of the
lesion, suggesting that CD39 is differentially expressed by
(perivascular) macrophages and microglia. In the periphery,
CD39 is also expressed by Treg cells [43]. CD39" Treg cells
were recently shown to suppress pathogenic Th17 cells
and were reduced in peripheral blood of MS patients [44].

In contrast to AP and CD39, human cerebral endothe-
lium did not express CD73. Instead, we found CD73 ex-
pression at the border of the Virchow-Robin space,
which may reflect CD73" astrocyte endfeet at the glia
limitans [45]. CD73 was also evident as punctate staining
in HLA class II" cells, most likely representing macro-
phages or microglia that have phagocytosed myelin,
which is known to contain CD73 [40]. Collectively, the
expression patterns of AP, CD39 and CD73 in MS
lesions further underscore the importance of extracellu-
lar nucleotides, which were previously reported to drive
leukocyte entry into the brain [24], mediate the suppre-
ssive action of Treg cells [43], and signal microglia to re-
spond to tissue damage [46].

The production of AP in vivo is increased upon LPS
challenge [47,48], and, also, IgM and IgG antibodies to the
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core domain of endotoxin are modulated by exposure to
LPS [49]. To determine the need for AP supplementation
in MS, we measured AP activity and determined endotoxin
exposure by direct and indirect methods. We found no sig-
nificant differences in AP activity and isoenzyme frequen-
cies in MS patients compared to controls, although AP
activity and AP isoenzyme distribution were slightly
altered in PP-MS patients. Another study also addressed
AP activity in RR-MS patients and reported comparable
AP activity levels in MS versus healthy controls [50]. To
our knowledge there are no other reports on AP activity in
PP-MS patients. Parallel to an increase in AP levels in PP-
MS, we detected a significant decrease of Endocab IgM
levels in PP-MS patients compared to RR-MS patients and
healthy controls, a finding that may be explained by diffe-
rences in age as we found a significant negative correlation
between age and Endocab IgM levels. In other human di-
sease conditions, decreased Endocab IgM levels have been
interpreted as consumption of antibodies caused by sys-
temic release of gut endotoxin, for example, after cardiac
surgery [49]. Similarly, low base-line levels of Endocab
IgM and IgG are associated with increased mortality and
prolonged hospitalization after surgery [51] and with the
development of systemic inflammatory response syndrome
(SIRS) in children with organ failure that occurred post-
operatively or after head injury [52]. In contrast, elevated
levels of IgG Endocab are found in Crohn’s disease, per-
haps reflecting chronic exposure to endotoxin due to
impaired gut barrier function [53]. Since the Endocab IgG
levels in PP-MS patients were comparable to controls, it is
unlikely that PP-MS patients have been chronically
exposed to endotoxin, at least to the rough-type of LPS
used in the Endocab assay.

Conclusions

In conclusion, using the EAE model we found that admin-
istration of AP during the priming phase was effective in re-
ducing clinical severity and proliferation of T cells in
response to MOG35-55. We also demonstrated a strong
expression of the AP-like enzyme CD39 in MS lesions, as a
possible reflection of the microglial response to inflamma-
tion and tissue damage. Although the number of patients
that were used to make comparisons and correlations in
our study is modest and confirmation of the findings is
required in an independent cohort, our results do suggest
that MS patients may have sufficient circulating AP levels
and neutralizing antibodies to inactivate and/or clear endo-
toxin. Nevertheless, upon microbial exposure or gut barrier
dysfunction, when endotoxin is released into the systemic
circulation, peripheral leukocytes could still be activated in
a non-specific manner driving neuroinflammatory disease.
The interrelationships between infections, microbial trans-
location of gut microbiota compounds and MS disease ac-
tivity, therefore, warrants further investigation.
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