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Abstract

Background Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevel-
opmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have
not been established in clinical practice, partly because of the range of potential targets. We therefore systemati-
cally reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain
and assessed their therapeutic potential.

Methods We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP)
and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROS-
PERQ; registration number CRD42023395690).

Results Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided
into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%)
of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investi-
gating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids
(5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control
core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects.
Many studies did not clearly state whether they controlled for potential study bias.

Conclusion Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal
brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design
that must be addressed to support clinical translation.
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Introduction

Perinatal inflammation is highly associated with neo-
natal mortality and morbidity, including neurode-
velopmental disorders such as vision and hearing
impairments, learning difficulties, autism spectrum
disorder, behavioural hyperactivity, schizophrenia and
cerebral palsy (CP) [1-3]. Of particular concern, the
risk of CP is increased several-fold in both preterm and
term infants exposed to perinatal inflammation (odds
ratio: 2.5-9.3) [4—6]. The cumulative lifetime economic
cost of CP in the USA was estimated to be over USD
11.5 billion in 2003 [3]. More recent evidence indi-
cates that the cost of disability associated with perina-
tal brain injury continues to rise, and that prevention
of such injury would substantially reduce the socio-
economic burden on affected individuals, their families
and society [7].

The only commonly used treatment for targeting
inflammation, namely corticosteroids (glucocorticoids),
may exacerbate brain injury and increase the risk of cer-
ebral palsy [8]. Magnesium sulphate for preterm neu-
roprotection, currently recommended for maternal
administration when preterm labour is expected before
30 weeks of gestation, may in part act through inhibition
of the NF-«xB inflammatory pathway [9, 10]. However,
recent follow-up studies to school age suggest it does not
significantly improve longer-term neurodevelopmental
outcomes compared to placebo [11, 12], although these
studies are relatively small due to incomplete follow-up.
Conversely, both small and large animal studies sug-
gest that therapeutic hypothermia is not neuroprotec-
tive after exposure to perinatal infection/inflammation
at term [13-16]. Collectively, these data suggest that
current therapeutics aimed at improving neurodevelop-
mental outcomes in preterm and term infants are at best
partially effective, and that development of targeted anti-
inflammatory treatments is an important area of unmet
medical need [17, 18].

There is strong evidence that chronic inflammation
related to perinatal infection and hypoxia—ischaemia
can independently or synergistically cause inflammation
in the fetus and neonate [19, 20]. In recent cohort stud-
ies, long-term neurodevelopmental disturbances were
associated with chronic systemic inflammation and dif-
fuse injury in the white matter tracts in both term and
preterm infants [2, 6, 21-24]. As previously described,
both systemic and central nervous system inflammation
are strongly associated with cell death, dysmaturation
and disturbed neuronal and oligodendrocyte develop-
ment and reductions in brain growth [25-28]. These dis-
turbances in white and grey matter development at the
cellular level likely underpin altered brain microstruc-
ture, reduced white and grey matter volumes [29, 30] and
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long-term behavioural and intellectual disabilities after
exposure to perinatal inflammation.

Despite this strong preclinical evidence that exposure
to inflammation does trigger brain injury, and encourag-
ing preclinical studies, no anti-inflammatory interven-
tions have been shown to prevent clinical perinatal brain
injury. In part this reflects confusion about the most
appropriate drug targets and lack of clarity on the most
appropriate preclinical studies to provide a foundation
for safety and efficacy trials in humans. In this systemic
review we aimed to evaluate the rigour of preclinical
studies undertaken in the last 10 years that investigated
potential immunomodulatory therapeutics to reduce
perinatal inflammation-induced brain injury. A second-
ary aim was to determine the current knowledge gaps for
clinical translation of the identified therapeutics.

Analysis strategy

Search method

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines [31] (Additional
file 1: Table S1 and Additional file 2: Table S2). The pro-
tocol was developed and registered with the International
Prospective Register of Systematic Reviews (PROSPERO;
registration number CRD42023395690).

Searches were conducted using Pubmed, Medline
(OvidSP) and EMBASE databases for publications
between January 2012 and July 2023. The following search
terms: (preterm brain injury OR perinatal encephalopa-
thy OR neonatal encephalopathy) AND (anti-inflamma-
tory) were utilised. Other sources used to identify studies
included relevant manuscripts and reviews. Reviews,
conference abstracts, and articles written in a language
other than English or for which no translation was availa-
ble were excluded. Search results for both databases were
collated, and duplicate articles were manually removed.
Abstracts were identified and screened by an unbiased
investigator (SBK) and duplicated by another investigator
(NTT).

Selection criteria

Studies were deemed eligible if they met the following
criteria: (1) conducted in an in vivo model of preterm/
term equivalent age; (2) intervention possesses immu-
nomodulatory or antimicrobial effects, or exclusively
impacts immune activation (Table 3); (3) clear histologi-
cal (based on the assessment of tissue inflammation and
injury) and/or functional outcomes are reported; and (4)
comparison to a vehicle control group is made. Studies
were excluded if they: (1) were conducted in vitro; (2) did
not meet the age criteria (i.e. were conducted in adult/
paediatric equivalent subjects); (3) tested drugs reported
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to have therapeutic impacts beyond immunomodulation;
(4) did not report outcomes relating to neuroinflamma-
tion and related brain injury, or (5) did not include appro-
priate control groups. In vitro studies were excluded
from this analysis due to their limited ability to capture
complex interactions between systemic immune activa-
tion and brain pathophysiology.

Data extraction

Studies were grouped by therapeutic agent and then fur-
ther subdivided by species, age, type of insult to induce
inflammation/injury, treatment and dosing regimen,
extent of temperature monitoring, subject sex and main
study outcomes (pathological/functional) and outcome
(protection/no protection). The (SYstematic Review Cen-
tre for Laboratory animal Experimentation) SYRCLE risk
of bias tool, described below, was used to evaluate the
potential for individual study bias.

Studies were assessed according to the extent of tem-
perature control, whether the insult and treatment were
randomised, whether investigators were blinded to the
intervention during histological and or functional assess-
ments, and whether males and females were included in
the analysis.

Studies were defined as being neuroprotective if there
was a statistically significant improvement (P<0.05) in
brain histopathology and/or functional outcomes in the
insult group that received treatment compared to the
insult group that received vehicle/placebo.

Risk of bias

A risk of bias assessment for the selected studies was
conducted using the SYRCLE Risk of Bias (RoB) tool
[32]. The SYRCLE’s RoB tool assesses the quality of ani-
mal studies (e.g. randomisation and blinding procedures
in study design) to critically appraise the preclinical
research methodology. The 10 RoB assessment domains
were scored as either “yes” for low risk of bias, “no” for
high risk of bias, or “unclear” if the experimental meth-
ods did not explicitly address the domain assessment
(Table 3).

Results

We identified 808 relevant records. After excluding
reviews, duplicates, and records for which the full text
was not available, we screened a total of 764 records and
excluded 724 for one or more of the following reasons:
ex vivo studies, inappropriate developmental age, brain
histology and functional outcomes were not examined,
or the therapeutic under investigation did not explic-
itly affect the immune system. A total of 40 publications
investigating 19 categories of therapeutic were included
in this analysis (Figs. 1 and 2). Publications that used
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more than one model of injury or showed different out-
comes based on different treatment regimens (e.g. differ-
ent drug dose and timing of drug delivery) were further
subdivided into individual studies. The original 40 publi-
cations were thereby subdivided into 59 individual stud-
ies, which are summarised in Table 1.

Preclinical models of neuroinflammation

Fetal or neonatal rodents (rats or mice) were the predom-
inant species used (n=47 studies). Eight studies used
fetal rodents from embryonic days 15-20, broadly cor-
responding to the neural development of human infants
at<22 weeks of gestation [33, 34]. The 35 postnatal
rodent studies ranged from postnatal days (P) 0—11. Eight
studies used rodents between P 0-6, which is broadly
comparable to human brain development at 22—-32 weeks
of gestation. Fifteen studies used rodents at P7, which is
comparable to the preterm human brain at approximately
30-34 weeks. Sixteen studies used rodents at P 9-11,
which is broadly comparable to human brain develop-
ment at term [33, 34]. There were 12 large animal studies:
six studies used fetal sheep at 0.7 of gestation, which is
comparable to the preterm human brain at approximately
30 weeks of gestation [35, 36]. One used term neonatal
piglets (postnatal day 1) and 5 used fetal sheep at 0.8—0.9
of term gestation; these ages are comparable to neural
maturation in the term human brain [35, 36].

Fourteen individual methods of causing inflammatory
injury were identified (Fig. 3A). Studies were divided
into three categories: inflammation initiated by path-
ogen-associated molecular patterns (infection-related
inflammation, n=17), inflammation initiated without
pathogen-associated molecular patterns (non-infection
related inflammation, n=35), and combined infection-
and not infection-related inflammation (n=7). Twenty-
three studies provoked neuroinflammation using the
Rice—Vannucci model of carotid artery ligation followed
by a period of moderate hypoxia. One study used neo-
natal hypoxia [37], and two studies used bilateral carotid
artery occlusion [38, 39]. Five studies used umbilical cord
occlusion in fetal sheep [40-44], one study used spon-
taneous fetal growth restriction in neonatal piglets [45]
and 2 studies induced fetal inflammation by injecting
IL-1p between the fetal membranes [46]. Eleven studies
induced inflammation using the Gram-negative bacte-
rial cell wall component lipopolysaccharide (LPS); four
administered LPS maternally (using either intrauterine
or intraperitoneal injection) [46—50] and seven infused
LPS directly to the fetus or newborn using either single
intracerebral, intracisternal or intraperitoneal injection
to the neonate [51-54] or repeated fetal i.v. LPS infu-
sions [55, 56]. Five studies used intracisternal injec-
tion of live S. pneumoniae to the newborn [57]. Seven
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Fig. 1 Flowchartillustrating the number of papers identified through database searching and other relevant sources, the number of full text
articles screened, assessed, and excluded, and the final number of original papers surveyed. Publications that used more than one paradigm

of encephalopathy or multiple treatment regimens were further subdivided if outcomes differed according to experimental paradigm or treatment
regimen. After subdividing these publications there was a total of 59 individual studies. The studies are summarised in Table 1

studies combined either intraperitoneal injection of live
S. epidermidis (n=2) [58] or LPS (n=5) with neonatal
hypoxia—ischaemia [50, 59-61].

Therapeutic doses, regimens, outcomes, and survival times
Twenty anti-inflammatory/immunomodulatory thera-
pies in 17 categories were investigated. A description of
each therapy, a summary of the number of studies that

reported neuroprotection vs. no protection for each ther-
apy are outlined in Table 2 and Fig. 3B, respectively.

Nine studies started the intervention before the insult
(Fig. 4A), and 50 studies administered the intervention
after the insult. For the latter approach, most studies
started treatment either within the first hour (z=20/50,
40%) or between 1 and 6 h after the insult (#=21/50,
42%) (Fig. 4B). Only 4 studies started treatment between
1 and 3 d after the insult, of which 3 reported neuropro-
tection and 1 reported increased injury after treatment
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Mechanisms of immune based interventions

GSK3g Inhibitor
Prevention of Pi3K-induced
cell death

COX2 Inhibitors
(Ibuprofen and Celecoxib)

TLR7 agonist

1 Prostaglandin synthesis

Corticosteroids (Dexamethasone,
Hydrocortisone, and Betamethasone)
{ Vessel permeability
4 Lymphocyte proliferation, macrophage

activation, and neutrophil migration

Antibiotics, and Antifungals
(Ceftriaxone, Daptomycin, Vancomycin,
Doxycycline, and Fluconazole)
Death and reduced reproduction of
bacteria and fungi.

Melanocortin-1 receptor agonist
MCR1 activation and downstream ©
signalling of ERK and MITF l

TLR7 activation and
activation of NF-kB
and IRF

Complement inhibitors
Inhibition of the complement
pathway

Cytokine-targeting therapies (IL-1
receptor antagonists, anti-IL-1B
monoclonal antibodies, anti-TNF proteins,
and IL-35)

Regulation of cytokines, and cytokine
signalling

Fingolimod
Effector lymphocytes sequestered to
lymph node, restricted from entering
the circulation and into the brain

PN

s

Innate defence regulator proteins, Colony
stimulating factors (CSF-1, G-CSF), Lipoxin A4,
Inter alpha inhibitor proteins,NF-kB inhibitors

Regulation of innate immune cells

Fig. 2 Outline of systemic and central nervous system inflammatory responses targeted by the immune-based therapeutics identified in this

systematic review. Created with BioRender.com

(Fig. 4B). The treatment dose, regimen and survival times
(Fig. 4C) varied markedly. The main outcomes for each
therapy are described below and in Table 1, in order of
least-to-most effective, according to the proportion of
studies that reported no improvement or deleterious out-
comes vs. those that showed improved outcomes, as indi-
cated by brain histopathology or behavioural assessment.

One study administered the anti-fungal treatment flu-
conazole (Table 2) to the fetus 2 days after exposure to
intra-amniotic Candida albicans and showed increased
neuroinflammation and oligodendrocyte loss (P<0.05,
Kruskal-Wallis with Dunnett’s post hoc test) [61]
Table 1).

Ten studies tested corticosteroids (hydrocortisone,
dexamethasone or betamethasone, Table 2). The less
potent corticosteroid, hydrocortisone, in a dose of 10 pg
given intracerebroventricularly 2 h after HI was associ-
ated with reduced infarct size at 2 days (P<0.05, one-way
ANOVA with Newman—Keuls post hoc) [62]. Similarly,
reduced infarct size after 2 days was seen with 300 pg
given intranasally 2 h after HI. However, protective or
injurious effects were not seen with lower or higher intra-
nasal doses (50-1000 ug) (P<0.05, one-way ANOVA
with Newman—Keuls post hoc) [62] (Table 1). Repeated

i.p. doses of dexamethasone (range: 0.1-0.5 mg/kg) given
4 days before HI were associated with increased neuronal
cell death after 1 day recovery (P<0.05) [63]. A single
intracerebral injection of dexamethasone or betametha-
sone given 1 h before LPS was associated with improved
histological and behavioural outcomes (P <0.05, one-way
ANOVA with Tukey’s post hoc) [54]. However, a single
intranasal dose of dexamethasone (0.1 pg) given 2 h after
HI was not associated with improved outcomes after
2 days [62].

In preterm fetal sheep, a single 12 mg i.m. dose of
maternal dexamethasone given either 4 h before or
15 min after global HI was associated with increased elec-
trographic seizures (P<0.05, repeated measures ANOVA
with Fisher’s LSD post hoc) and increased white and grey
matter injury after 7 days (P<0.05, three-way ANOVA)
[43, 44] (Table 1). Similarly, maternal betamethasone
(11.2 mg at 48 and 24 h before preterm birth) was asso-
ciated with increased inflammation, oxidative stress and
vascular extravasation in neonatal lambs exposed to high
tidal volume ventilation (P<0.05, two-way ANOVA with
Holm-Sidak post hoc test) [64] (Table 1).

Four studies investigated giving repeated doses of inter-
alpha inhibitor proteins (a serine protease inhibitor;
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Fig. 3 A Number of studies (n) which promoted inflammation using infection related, non-infection related and combined infection
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and non-infection related techniques and whether they showed the intervention to be neuroprotective (white) or not neuroprotective (black). B
The number of studies (n) that showed neuroprotective outcomes (white) versus the number of studies that were not protective (black) for each

therapy



Kelly et al. Journal of Neuroinflammation

(2023) 20:241

Page 18 of 32

Table 2 List of immunomodulatory therapies analysed in this review, their Therapeutic Goods Administration (TGA)/Food and Drug
Administration (FDA) approval status and their mechanism of action

Reference(s)

Therapeutic

TGA/FDA approval Mechanism

Antifungals

[61]
Corticosteroids
[43,44, 54,62, 63]

[54, 64]

Fluconazole

Dexamethasone

Hydrocortisone

Betamethasone

Inter-alpha inhibitor proteins

[65, 66]

Human plasma derived inter-alpha inhibitor proteins

Complement inhibitors

[67]
TLR7 agonist
[41,42]

Antibiotics
[57]

[57]

(58]
[68]

Methylxanthines
[58]

NF-kB inhibitors
[59]

Fingolimod
[37,47,48,70]

GSK3B inhibitor
[71]

RLS-0071

(Gardiquimod) GDQ

Ceftriaxone

Daptomycin

Vancomycin

Doxycycline

Pentoxifylline

Tat-NBD peptide

Fingolimod (FTY720)

SB216763

Yes/yes Selective inhibitor of fungal cell wall synthesis

Yes/yes A corticosteroid that acts on glucocorticoid receptors
which suppresses neutrophil migration, macrophage
activation and lymphocyte proliferation and decreases
permeability of capillaries. More rapid onset

and shorter duration of action than betamethasone

Yes/yes A corticosteroid that acts on glucocorticoid receptors
which suppresses neutrophil migration, macrophage
activation and lymphocyte proliferation and decreases
permeability of capillaries. Less potent and shorter

acting than dexamethasone

Yes/yes A corticosteroid that acts on glucocorticoid receptors
which suppresses neutrophil migration, macrophage
activation and lymphocyte proliferation and decreases
permeability of capillaries. More potent and longer

lasting than dexamethasone and hydrocortisone

No/no Endogenous human plasma proteins that block
the release of serine proteases protecting cells

from cytotoxicity

No/no An amino acid peptide that binds to the C1gq compli-
ment protein preventing downstream signalling

of the compliment pathway

No/no An imidazoquinoline analogue that induces the activa-

tion of NF-kB in cells expressing human or mouse TLR7

A broad-spectrum cephalosporin antibiotic that inhib-
its the mucopeptide synthesis in the bacterial cell wall

Yes/yes

Yes/yes A broad-spectrum cyclic lipopeptide antibiotic
against Gram-positive bacteria. Disrupts bacterial cell

membrane function

Yes/yes A glycopeptide antibiotic against Gram-positive bacte-

ria. Inhibits cell wall biosynthesis

Yes/yes A tetracycline antibiotic that inhibits bacterial protein

synthesis

Yes/yes A methylxanthine derivative that lowers blood
viscosity by increasing erythrocyte flexibility, reducing
plasma fibrinogen, inhibiting neutrophil activation,

and suppressing erythrocyte/platelet aggregation

No/no A 22 amino acid peptide that inhibits NF-kB signal-
ling by penetrating the cell and blocking the NF-kB

essential modifier (NEMO)

Yes/yes A sphingosine 1-phosphate (S1P) receptor agonist that
causes lymphocytes to be sequestered to the lymph

nodes

No/no Selectively inhibits the activity of GSK-3a and GSK-3(3,

preventing PI3-kinase induced cell death
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Table 2 (continued)

Reference(s) Therapeutic TGA/FDA approval Mechanism

Innate defence regulator proteins

[60] IDR-1018 No/no A synthetic 12 amino acid antibiofilm peptide
that selectively binds to the nucleotide (p)ppGpp
inhibiting bacterial function

Lipoxin A4

[72] LXA4 No/no A metabolite of arachidonic acid that stimulates
the bacteria-killing capacity of leukocytes, inhibit
neutrophil infiltration and pro-inflammatory cytokine
and chemokine production via inhibition of NF-kB
and activator protein 1

Cytokine IL-35 targeted therapies

[73] Recombinant human IL-35 No/no An anti-inflammatory cytokine that induces regulatory
Tand B lymphocytes

Melanocortin 1 receptor agonists

[74] BMS-470539 No/no A small molecule that acts as a selective agonist
of the melanocortin 1 receptor promoting down-
stream signalling

COX2 inhibitors

[45,75] Ibuprofen Yes/yes A non-steroidal anti-inflammatory that non selectively
inhibits COX1 and COX2 to reduce prostaglandin
synthesis

[53] Celecoxib Yes/yes A non-steroidal anti-inflammatory drug (NSAID)
that selectively inhibits COX2 and decreases prosta-
glandin synthesis

Granulocyte colony-stimulating factor

[76] Human G-CSF produced by recombinant DNA No/no An endogenous lipoxygenase-derived eicosanoid

technology mediator that suppresses leukocytes and inhibits

production of pro-inflammatory cytokines

Colony stimulating factor 1

[77] Rh-CSF1 No/no Recombinant human growth factor of CSF1 that leads
to the recruitment of CSF1R expressing cells includ-
ing macrophages, monocytes and dendritic cells

Cytokine TNF targeted therapies

[40, 52, 56] Etanercept Yes/yes A soluble TNF receptor that sequesters TNF to prevent
it from interacting with endogenous TNF receptors

Cytokine IL-1 targeted therapies

[38,39] Mouse anti- ovine-IL-1{3, monoclonal antibodies No/no A mouse-anti-ovine IL-13 monoclonal antibody
that binds to ovine IL-1B and neutralises inflamma-
tion by blocking IL-1(3 from interacting with the IL.-13
receptors

[46,49-51, 55] Anakinra Yes/yes A recombinant human IL-1 receptor antagonist
that competitively binds to the IL-1 receptor inhibiting
the activity of IL-Taand IL-1

[46] 101.10 (Rytvela) No/no An allosteric IL-1 receptor peptide antagonist

that selectively binds to the IL-1 receptor inhibiting
the activity of IL-1Ta and IL-13

Table 2) (30 mg/kg i.p.) to the neonate. Two showed no
improvement in histology (at 3 days) and behavioural
outcomes (at~16 weeks), respectively, with treatment
started from one to six hours after HI (P<0.05, one-
way ANOVA) [65, 66]. In contrast, two studies showed
reduced tissue loss (P<0.05, one-way ANOVA with
Fisher’s LSD post hoc) and improved memory at 3 days
and~13 weeks (P<0.05, repeated measures ANOVA

with Tukey’s post hoc), respectively, when treatment was
started within the first hour after HI, although improved
outcomes were only seen in male offspring [65, 66]
(Table 1).

Two studies used the complement inhibitor RLS0071
(Table 2). Both studies gave single or repeated doses
of 10 mg/kg i.p., starting 1 h after HI. One showed no
improvement in histological outcomes after 2 days
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Fig.4 A The number of studies (n) that showed neuroprotection (white) or no protection (black) after administering the treatmentat<1h, 4 h,
14 h, 2 d or 3 d before the insult. B The number of studies (n) that showed neuroprotection (white) or no protection (black) after administering
the treatmentat<1h, 1-6 h, 18 h, 1 d, 2 d, or 3 d after the insult. C The number of studies (n) that showed neuroprotection (white) or no protection

(black) stratified by survival time after the insult

(P<0.05, paired T-test and ANOVA) [67]. One showed
reduced cortical infarct area 2 days after HI when com-
plement inhibitor was combined with therapeutic hypo-
thermia (compared to hypothermia alone) (P<0.05,
paired T test and ANOVA) [67] (Table 1).

Two studies used a toll-like receptor 7 (TLR7) ago-
nist (gardiquimod (GDQ), Table 2) at a dose of 1.8 mg/
kg via fetal intracerebroventricular infusion from 1 h
after global HI. Improved neuronal and oligodendrocyte
survival were seen 3 days after treatment (P<0.05, two-
way ANOVA with Fisher’s LSD post hoc) [41], whereas
there was delayed onset of epileptiform discharges and
no overall histological improvement after 7 days recovery
(*P<0.05, repeated measures ANOVA with Fisher’s LSD
post hoc) [42] (Table 1).

Eight, studies tested antibiotics for induced bacterial
infection. One study used a single i.p. dose of 15 mg/kg
vancomycin (Table 2) given 2 min after neonatal S. epi-
dermidis inoculation combined with HI. Treatment was

associated with attenuated brain tissue loss 9 days later
(P<0.05, Kruskal-Wallis test with Dunn’s post hoc)
[58]. In the same animal model, combining pentoxifyl-
line (40 mg/kg i.p.) with vancomycin did not augment
vancomycin-induced protection (P> 0.05, Kruskal—Wallis
test with Dunn’s post hoc) [58] (Table 1). One study used
10 mg/kg doxycycline i.p. given 1 h after HI and showed
reduced lesion size and neuronal loss after 42 days
(P<0.05, Mann—Whitney U test) [68]. One study admin-
istered ceftriaxone (Table 2) at a dose of 100 mg/kg i.p.
18 h after intracisternal S. pneumonia inoculation. Treat-
ment was associated with increased neuronal loss after
42 h (P<0.05, Mann—Whitney test), and reduced learning
and memory after 3 weeks (P<0.05, two-way ANOVA)
[57] (Table 1). One study used 100 mg/kg ceftriaxone i.p.
combined with the non-bacteriolytic antibiotic daptomy-
cin 10 mg/kg s.c. given 18 h after intracisternal S. pneu-
monia inoculation and showed reduced cortical necrosis
after 42 h (P<0.05, Mann—Whitney test) [57] (Table 1).
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Three studies combined ceftriaxone i.p. with daptomycin
10 mg/kg s.c. and 2 doses of the matrix metalloprotease
inhibitor trocade (75 mg/kg) given 24 h apart starting
at 18 h after intracisternal S. pneumonia inoculation.
This treatment regimen was associated with reduced
hippocampal apoptosis and cortical necrosis after 42 h
(P<0.05, Mann—Whitney test), and improved hear-
ing, learning and memory at 3 weeks (P<0.05, two-way
ANOVA) [57] (Table 1).

Three studies used a single dose of a nuclear factor
kappa B (NF-«B) inhibitor (Tat-NBD, Table 2) delivered
intranasally to the neonate at a dose of 1.4 mg/kg 10 min
after the insult. Two showed reduced tissue loss after
7 days in rat pups exposed to a combination of HI and
LPS and one showed no improvement in histological out-
comes in pups exposed to HI alone (P<0.05, unpaired
t-test or one-way ANOVA with Newman-Keuls post
hoc) [59] (Table 1).

Four studies tested fingolimod (FTY720, Table 2), a
sphingosine-1-phosphate receptor modulator [69]. Of
these, two gave it antenatally to the mother, as a single
dose of 1 mg/kg i.p. immediately or 30 min after mater-
nal LPS-exposure and showed improved histological out-
comes (reduced markers of inflammation in the white
matter and cortex) after 6- and 4-h recovery, respec-
tively (P<0.05, Mann—Whitney test) [47, 48]. Two stud-
ies gave fingolimod to the neonate via single or repeated
doses (0.3—1 mg/kg, i.p.). The 1 mg/kg dose was associ-
ated with worse histological outcomes (increased cortical
tissue loss) compared to vehicle 7 days after HI (P<0.05,
unpaired ¢-test.), whereas 0.3 mg/kg was associated with
reduced total seizure duration and improved behavioural
outcomes at 7 weeks after HI (P<0.05, two-way ANOVA
with Tukey’s post hoc) [37, 70] (Table 1).

One study used repeated doses of a glycogen syn-
thase kinase 3 B (GSK3p) inhibitor (SB216763, Table 2)
at 10 mg/kg i.p. to the neonate from 14 h before the
insult and showed reduced tissue loss at 7 days after HI
(P<0.05, one-way ANOVA with Holm-Sidak’s post hoc)
[71] (Table 1).

One study gave an innate defence regulator protein
1018 (IDR-1018, Table 2) in a single dose (8 pg/g i.p.) to
the neonate at 3 h after LPS+HI and showed reduced
white and grey matter tissue loss 7 days after treatment
(P<0.05, t test) [60] (Table 1).

One study used single intracisternal infusion of lipoxin
A4 (Table 2) at a dose of 10 mg/kg starting 1 h after HI
and showed reduced infarct area and improved motor
function and cognition at 24 h and 3 weeks, respectively
(P<0.05, one-way ANOVA with Tukey’s post hoc) [72]
(Table 1).

Recombinant human IL-35 was administered i.v. to the
neonate at the time of HI and 1 day later, reduced infarct
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volume was shown 2 days after treatment (P<0.05, one-
way ANOVA with Tukey’s post hoc) [73] (Table 1).

Two studies administered a single dose of a melano-
cortin receptor 1 agonist (BMS-470539, Table 2) intra-
nasally at 1 h after HI [74]. The concentrations tested
ranged from 50 ug/kg to 500 pg/kg, with survival
times between 2 days and 4 weeks. Outcomes were
dose dependent; 50 pg/kg did not improve outcomes,
whereas 500 pg/kg and 160 ug/kg reduced infarct area
and improved sensorimotor function at 2 days and
4 weeks, respectively (P<0.05, one-way ANOVA or
Student ¢-test with Tukey’s post hoc) (Table 1).

Three studies used cyclooxygenase 2 (COX2) inhibi-
tors (ibuprofen and celecoxib; Table 2) administered to
the neonate via single or repeated doses of 10-20 mg/
kg from 5 min to 2 h (i.p.) after LPS exposure, or 1 day
(oral) after delivery in a model of spontaneous growth
restriction. One showed improved histological out-
comes (reduced inflammation and improved white and
grey matter integrity) and motor function after one day
(P<0.05 one-way ANOVA with Student—Newman-—
Keuls post hoc) [53], one showed reduced inflamma-
tion in the frontal cortex after 10 days (P <0.05, ¢-test)
[75], and one showed reduced white matter gliosis,
improved myelination and neuronal survival after three
days (P<0.05, two-way ANOVA with Holm-Sidak post
hoc) [45] (Table 1).

Three studies used either granulocyte (G-CSE
Table 2) or colony stimulating factor 1 (CSF-1/M-CSF,
Table 2). When G-CSF was given as a single i.p. 50 pg/
kg dose intraperitoneally at 1 h after HI, improved
blood brain barrier integrity and reduced inflammation
were reported after 2 days recovery (P<0.05, one-way
ANOVA with Tukey’s post hoc) [76]. CSF-1 was given via
repeated doses of 80 ug/kg intranasally at 1 and 24 h after
HI. Reduced and sensorimotor and cognitive function
were shown after 2 days and 4 weeks recovery, respec-
tively (P<0.05, one-way ANOVA with Tukey’s post hoc)
[77] (Table 1).

Etanercept, a soluble TNF receptor (Table 2) that
inhibits TNF activity, was administered directly to the
fetus or neonate in three studies. A single i.p. dose (5 mg/
kg) was associated with improved white matter integrity
1 day after hypoxia—ischaemia (HI) (P<0.05, ANOVA
with Bonferroni post hoc) [52]. One study gave repeated
doses of etanercept i.v. to fetal sheep (5 mg/kg) starting
immediately after LPS exposure and one study admin-
istered it to the fetal sheep brain via repeated intracer-
ebroventricular infusions (1 mg) starting from 3 days
after HI. Both showed improved reduced neuroinflam-
mation and reduced white matter injury (*P<0.05, two-
way ANOVA with Fisher’s LSD post hoc) and or reduced
suppression of electroencephalogram power (repeated
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measures ANOVA with Fisher’s LSD post hoc) at 10 days
and 3 weeks [40, 56] (Table 1).

For studies targeting IL-1, eight studies gave IL-1
receptor antagonists (anakinra or 101.10, Table 2) at
doses of 1 to 13 mg/kg. Three treated prophylactically,
i.e. starting before the insult, and used single dosing in
fetal mice. All showed improved histological (reduced
markers of neurotoxicity and improved microvascular
integrity) (P<0.05, Kruskal-Wallis one-way ANOVA)
and functional outcomes (improved visual evoked
potentials) (P<0.05, Kruskal-Wallis one-way ANOVA
with Dunn’s post-test) in the offspring when assessed at
4-6 h, and 15-30 days after the insult, respectively [46,
49] (Table 1). Three studies treated the neonate directly
using repeated doses started immediately after the
insult in postnatal mice exposed to maternal LPS and
or neonatal hypoxia. All showed improved histologi-
cal (P<0.05, ANOVA with Newman-Keuls post hoc
test) and functional outcomes (P <0.05, unpaired ¢-test
with Welch correction) 40 days later [50] (Table 1).
One study gave three doses of anakinra between 5 min
and 22 h after the insult to LPS-treated male rat pups
and showed improved histological and MRI outcomes
1 day later (P<0.05, Kruskal-Wallis tests with Dunn’s
multiple comparisons) [51]. One study gave anakinra
1 h after progressive repeated LPS exposure in fetal
sheep and showed both improved histological (P<0.05,
two-way ANOVA with Fisher’s LSD) and functional
(improved electroencephalogram power, P<0.05 two-
way ANOVA with repeated measures) after 4 days [55].
Two studies gave one or two doses of 5.1 to 7.7 mg/kg
to the fetus of a mouse anti-ovine IL-1p monoclonal
antibody (Table 2) starting 15 min after the insult. Both
showed improved histological outcomes (blood brain
barrier penetration and reduced grey matter apopto-
sis) after 1-day recovery (P<0.05, P<0.05, one-way
ANOVA with FSD post hoc) [38, 39] (Table 1).

Temperature monitoring

Ten out of 59 studies (16%) reported monitoring core
temperature during the study (Table 1, Fig. 5A). Of
these, 5 reported maintaining core temperature dur-
ing the insult (HI) but not during recovery. One study
reported temporal core temperature data through-
out the experimental period [58]. Twenty-three stud-
ies reported maintaining ambient air temperature
(range: 28-38 ‘C) during the study period, 18/23 (78%)
reported neuroprotection. Twenty five studies did not
report temperature monitoring as part of their study
protocol, however 11/25 studies (44%) were con-
ducted in fetal sheep, where fetal core temperature is
maintained in utero between 39.0 and 39.5 C by the
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Fig. 5 A The number of studies (n) that showed neuroprotection
(white) or no protection (black) and monitored ambient temperature,
core temperature, or did not report temperature monitoring. B

The number of studies (n) that showed neuroprotection (white)

or no protection (black) which reported outcomes in both males

and females (8 + @), males only (&), females only (Q), or did not report
the sex of the subjects

intrauterine environment [78, 79]. An overview of type
of temperature control for the studies included can be
seen in Fig. 5A.

Subject sex

Forty-one out of 59 studies (69%) reported outcomes in
both sexes, but 11 of these studies did not report num-
bers or ratios of males and females (Table 1, Fig. 5B).
Four out of 59 studies reported outcomes in males only
[51, 63, 66]. Of these, 2 reported improved outcomes, one
reported no improvement and one reported worse out-
comes with treatment. Fifteen out of 59 studies (25%) did
not report the sex of the subjects, of these, 14/15 studies
showed improved outcomes (Fig. 5B).

Study bias

The SYRCLE RoB tool [32] was used to measure risk of
study bias (Table 3). Thirty out of 40 papers stated that
allocation to groups was random, although only two
papers gave specific details relating to how the randomi-
sation was performed [47, 74]. Nine out of 40 papers
reported the baseline characteristics of the groups ana-
lysed. No studies explicitly reported randomly hous-
ing animals during the experiment or noted whether
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the caregivers and examiners were blinded to treat-
ment groups. Seventeen out of the 40 papers (42%) did
not report blinding of the assessor/s during the analysis,
while one paper reported conducting a random outcome
assessment [65]. Seventeen out of 40 papers (42%) did
not address incomplete outcome data and were therefore
at risk of attrition bias. All papers appeared to be free
from selective outcome reporting (Table 3).

Discussion

Perinatal inflammation is a major cause of neurodevel-
opmental impairments in preterm and term infants [25,
26]. Developing effective therapeutic interventions for
the ‘at risk’ fetus or neonate requires that we improve our
understanding of the pathophysiological mechanisms
that lead to neurodevelopmental impairments, identify
therapeutic targets, and test pharmacological interven-
tions in a translational research pipeline that incorporates
high quality small and large animal trials. In this system-
atic review, we set out to identify which immunomodula-
tory interventions have been trialled between 2012 and
2023 for inflammation-induced brain injury and deter-
mine key knowledge gaps in the literature that need to be
addressed in animal studies before progressing potential
therapies into human trials for perinatal neuroprotection.

Modelling perinatal infection/inflammation

There is compelling evidence that both mild and moder-
ate-to-severe HIE and infection/inflammation are highly
associated with microgliosis and activation of distinct
inflammatory pathways in the peripheral and central
nervous system, as previously reviewed [19, 26, 80]. Most
of the studies surveyed here (59%) used models of ‘non-
infection’ related inflammation (hypoxia with or without
ischaemia). A few studies modelled ‘infection’ related
inflammation (28%) or combined ‘infection and non-
infection’ related insults (12%). None tested interventions
in the setting of Gram-positive infection, such as myco-
plasmas (e.g. Ureaplasma spp.), which are among the
most common bacterial isolates in pregnancies compli-
cated by chorioamnionitis (fetal infection/inflammation),
preterm birth [81], and neurodevelopmental impairment.
For example, amniotic fluid cultures that are positive for
Ureaplasma urealyticum are associated with a higher risk
of adverse psychomotor development, abnormal neu-
rological outcome and a higher risk of cerebral palsy at
2 years of age compared to patients with negative amni-
otic fluid cultures [82].

None of the studies surveyed used polymicrobial mod-
els of inflammation. There is emerging evidence that
multiple bacteria and viruses reside in the placenta and
amniotic fluid, raising the possibility that, at least in some
cases, there may be a polymicrobial aetiology to perinatal
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infection/inflammation-induced impairments in brain
development [83—-87]. This concept is supported by stud-
ies in animal models that show combining viral and bac-
terial inflammation in pregnant mice is associated with
increased rates of preterm birth, tissue inflammation and
necrosis relative to either inflammatory stimulus alone
[88, 89]. Furthermore, few studies modelled repeated
fetal or neonatal infection/inflammation. Repeated
infections occur in approximately two thirds of preterm
infants <30 weeks of gestation and are associated with
an increased risk of white matter abnormalities and mor-
tality [90, 91]. Another consideration is that none of the
studies surveyed tested immunomodulators in models of
viral infection. This highlights another important knowl-
edge gap given the strong association between congenital
infections with viruses, such as cytomegalovirus herpes
simplex virus type 1 and severe acute respiratory syn-
drome coronavirus 2, and long-term neurological seque-
lae [92-95].

Controlling for iatrogenic hypo/hyperthermia

Most publications (n=47/59, 79%) used neonatal
rodents. Rigorous studies in neonatal rodents offer many
advantages for neuroprotection research, as previously
highlighted [96]. However, due to their small body mass
relative to surface area, lack of subcutaneous fat, naked
skin and limited shivering response, neonatal rats pro-
duce less heat and lose more body heat than adults [96,
97]. These factors make them functionally poikilothermic
and susceptible to rapid changes in body and brain tem-
perature during changes in environmental temperature
[98]. Small changes in body temperature are known to
affect neurological outcomes in animal and human stud-
ies [96, 99, 100]. Furthermore, as previously reviewed,
neuroprotective effects of various pharmacological inter-
ventions, including anaesthetics, can be confounded by
drug-induced hypothermia mediated by increased heat
loss [100]. Conversely, neuroprotection can be masked by
delayed hyperthermia [101, 102]. Thus, care is required
to ensure that iatrogenic changes in body temperature do
not occur to ensure that outcomes are not confounded by
unappreciated changes in body temperature or environ-
mental conditions.

Of concern, only 16% of studies published since 2012
measured core temperature; half of these studies meas-
ured core temperature during the insult, and one explic-
itly reported temperature data after treatment [58]. Most
of the studies measured environmental temperature
which ranged from 28-38 °C (—4 to 0 “C below core tem-
perature). We identified 4 studies that used maternal LPS
exposure to model antenatal infection/inflammation,
all reported modest improvements in neurological out-
comes, but none monitored maternal body temperature.
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Two of these studies administered fingolimod, a periph-
eral vasodilator [103], to the mother. One study did not
state whether temperature was maintained, the other
reported maintaining ambient temperature between
21 and 22 °C. This is an important consideration since
maternal LPS exposure is commonly associated with
pyrexia. Intrapartum fever is associated with adverse
neonatal outcomes and increased risk of cerebral palsy
and neonatal encephalopathy [104], likely mediated by a
combination of increased release of oxygen free radicals
and excitatory neurotransmitters, enhanced glutamate
toxicity on neurons and glia, blood brain barrier dys-
function and proteolysis [105]. Thus, it is not possible to
know whether neuroprotective effects of fingolimod were
mediated by iatrogenic hypothermia in the pregnant
dams or direct anti-inflammatory effects of fingolimod.

Of the 25 studies that did not report controlling body
temperature, 10 were conducted in fetal sheep. A major
advantage of testing potential neuroprotectants in fetal
sheep is that their body temperature is regulated by the
pregnant ewe and therefore unless the ewe is febrile, fetal
core temperature is highly stable [78, 79]. Collectively
these observations highlight the need for animal stud-
ies to improve core temperature monitoring throughout
the experimental period to ensure that outcomes of pre-
clinical drug trials are not confounded by fluctuations in
maternal, fetal or neonatal body temperature.

Limitations of currentimmunomodulatory therapies:
corticosteroids and antibiotics

Currently there are no clinically proven treatments to
prevent infection/inflammation related brain injury. Of
the immunomodulatory interventions identified in this
systematic review corticosteroids and antibiotics are
among the most routinely used interventions in perinatal
medicine. In our analysis, the corticosteroids dexameth-
asone and betamethasone showed the least promising
outcomes, with 5/10 (50%) of studies reporting either no
improvement or deleterious effects. Indeed, in human
studies corticosteroids have been associated with exacer-
bation of perinatal brain injury, including increased risk
of both intraventricular haemorrhage, cerebral palsy and
hyperactivity in childhood [8, 106]. The potential for cor-
ticosteroids to cause deleterious effects in the perinatal
brain are postulated to relate to the stage of neurodevel-
opment at the time of exposure, the dose and duration
of exposure relative to the timing of the insult [107], and
their potential to cause hyperglycaemia, which animal
and human studies have shown to augment encepha-
lopathy after HI [44, 108]. Furthermore, meta-analysis
suggests that prophylactic antibiotics given to women
at risk of preterm labour with ruptured membranes are
associated with an increased risk of neonatal death and
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disability [109]. These observations are supported by ani-
mal studies, for example treating pregnant rabbits with
antibiotics 24 h after intrauterine E. coli administration
was associated with improved survival but increased
white matter cell death [110]. The mechanisms for this
are unclear, however it is possible that bacterial lysis pro-
motes the release of bacterial fragments that augment
inflammation-induced injury.

Consistent with this hypothesis, we identified two
studies in this review that showed increased injury with
stand-alone antibiotic or anti-fungal treatments [57, 61].
By contrast, combining antibiotics with the matrix met-
alloproteinase-9 inhibitor trocade was associated with
improved outcomes, suggesting that in cases of fetal or
neonatal infection combining antibiotics with an anti-
inflammatory intervention could be a more effective
approach [57]. Conversely, another study showed that
combining antibiotics with the phosphodiesterase inhibi-
tor pentoxifylline did not augment vancomycin-induced
protection against Gram-positive bacterial infection,
indicating that targeting the right anti-inflammatory
mechanism/s to augment antimicrobial treatment is
an important consideration [58]. In this analysis anti-
cytokine therapies, particularly those targeting the pri-
mary effector cytokine IL-1, were most associated with
improved outcomes in models of both infection related
inflammation and non-infection related inflammation.
This raises the possibility that use of anti-cytokine thera-
pies alone or as an adjuvant to antibiotic therapy could
be an effective approach to prevent or mitigate inflamma-
tion-induced injury in the perinatal brain.

Who are we treating and when are we treating them?

A key translational consideration for testing potential
neuroprotectants is who and when to treat. A minority
of therapeutics (8/20; 40%) identified in this review were
tested across multiple preclinical models of infection
related, non-infection related or combined inflammation.
Almost half of the studies (29/59; 46%) started the inter-
vention before or immediately after the insult (within
60 min). Whilst this approach provides useful insight
into the early pathophysiology of injury, it unlikely to be
practical for clinical translation. Clinically, it is difficult to
identify fetuses who are at risk of injury since the posi-
tive predictive value of fetal heart rate monitoring and
biophysical profiling for predicting adverse neurode-
velopmental outcomes is low [111, 112]. Similarly, early
neonatal cranial ultrasound is not reliable at detecting
ongoing diffuse white matter injury. Instead, its valid-
ity has been shown in the setting of advanced severe
cystic white matter injury, which is now less common
than diffuse non-cystic injury [113-115]. Diffusion mag-
netic resonance imaging (MRI) has been shown both in
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preclinical models and in preterm infants to accurately
detect acute white matter injury [116—121]. However, it is
not feasible to systematically screen all high-risk infants
with diffusion MRI in the first few days after birth.
Twenty-one out of 59 studies (35%) started the interven-
tion between 1 and 6 h, and 9 studies (15%) started treat-
ment between 18 h and 3 days after the insult. Ideally,
pharmacological interventions need to be administered
around the time of bulk cell death/injury, which primarily
occurs within hours to days after the insult. As well, there
is evidence that chronic inflammation makes a contribu-
tion to the sub-acute and chronic phases of injury, which
develop several days to weeks after the initial insult
[9, 122-124]. This suggests that delayed use of immu-
nomodulatory interventions, alone or in combination
with interventions that target other pathways of cell dam-
age or repair (e.g. antioxidants, trophic factors, stem cells
or stem cell secretomes), could be an effective strategy to
mitigate delayed or tertiary brain injury. Ultimately, this
raises the need to identify biomarkers of evolving brain
injury to facilitate early treatment [125-127], along with
understanding the therapeutic window of opportunity for
potential interventions in carefully designed animal trials
to progress promising therapies from the animal lab to
the bedside.

Assessment of long-term functional and histological
outcomes

Another important limitation of the studies identified
in this review is that most studies (61%) used survival
times of <7 days, and less than half (22/59 studies; 37%)
assessed functional outcomes. Indeed 40% of studies
used survival times of hours to 2 days after the insult.
Short survival times provide important information
about acute histological and functional outcomes, but it
is well established that injury evolves many days—weeks
after the insult [9, 123, 128] and that functional and
histological outcomes are sometimes discordant [96].
Twenty-one out of 59 studies (35%) assessed outcomes
beyond 1 week, most (18/21 studies; 85%) reported neu-
roprotection, however none reported measuring core
temperature during treatment or beyond the initial
insult. Thus, assessment of histological and functional
outcomes in studies beyond the first few hours to days
after the insult is an important consideration for future
animal trials designed to evaluate the efficacy of potential
therapeutics.

Controlling for potential effects of subject sex

on neurological outcomes

Most studies (40/59) reported using subjects of both
sexes in the experimental design, however 11 of these
studies did not report numbers or ratios of males and
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females. The remaining studies either did not report the
sex of the subjects or tested interventions in males only.
Studies investigating the impact of infectious and non-
infectious insults have reported sexual dimorphisms in
the severity and evolution of immune responses [129],
perinatal brain injury [130, 131] and responses to treat-
ment [132, 133]. Four of the 59 studies only used male
subjects in their experimental protocol. In addition, only
eight studies accounted for sex in outcome reporting. Of
these, two stated that a post hoc analysis was performed
to assess sex differences between the groups [46]. The
remaining five studies reported sex differences as primary
outcomes [37, 62, 65], and showed a bias towards neu-
roprotective effects in males. It remains unclear whether
similar differences exist in human trials [11, 134, 135].
Overall, these data raise the need for greater emphasis on
evaluating the impact of sex in future animal studies.

Risk of bias

To evaluate study bias, we used the SYRCLE risk of bias
assessment tool. No studies reported random housing of
animals. This is a particularly important consideration for
small animal (rodent) studies. For example, there is com-
pelling evidence that differences in light exposure, which
may vary with respect to rack location, can affect repro-
duction and behaviour [136, 137]. Additionally, ambient
temperature can vary with respect to position of the cage
with ambient temperature in the top cage being up to 5°C
higher than the bottom cage [138]. Seventeen out of 40
papers (42%) did not report blinding of examiners during
outcome assessments, and 17/40 papers (42%) did not
state whether incomplete outcome data were addressed.
Only 9/40 papers (23%) reported baseline characteristics,
raising the possibility that potential confounders (e.g.
unequal distributions of sex, body weight, relevant physi-
ological parameters) may not have been addressed in the
analysis. Collectively these data highlight possible incon-
sistencies in the quality of the data surveyed. We cannot
definitively conclude that the methodological issues iden-
tified in our analysis affected the outcomes of the studies.
Nevertheless, if this critical information is not reported
or accounted for in publications, it is difficult to assess
the significance of past and future studies in a meaningful
way.

Conclusion

There is an important unmet need to identify and
develop effective immunomodulatory interventions
for the prevention of perinatal brain injury. Despite
many successful preclinical trials, there are no immu-
nomodulatory treatments for perinatal neuroprotec-
tion in clinical practice. In this systematic review, we
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examined preclinical publications between 2012 and
2023 and highlight opportunities to improve the way
that preclinical animal trials are designed, carried out
and reported to help overcome the ‘translational block’
and close the gap between animal studies and human
trials for perinatal neuroprotection. Future studies
should evaluate potential therapies in diverse preclini-
cal models that replicate relevant disease pathophysiol-
ogy, control for iatrogenic changes in temperature that
may occur as part of the experimental insult or treat-
ment, address pragmatic treatment regimens that are
conducive to clinical application, control for potential
effects of subject sex on outcomes, assess long-term
functional and histological outcomes, and follow rel-
evant guidelines that mitigate study bias.
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