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Abstract

Background: Spinal cord ischemia-reperfusion (I/R) involves two-phase injury, including an initial acute ischemic
insult and subsequent inflammatory reperfusion injury, resulting in blood-spinal cord barrier (BSCB) dysfunction
involving the TLR, pathway. However, the correlation between TLR,/MyDgg-dependent and TLR,/TRIF-dependent
pathways in BSCB dysfunction is not fully understood. The aim of this study is to characterize inflammatory responses
in spinal cord I/R and the events that define its clinical progression with delayed neurological deficits, supporting a
bimodal mechanism of injury.

Methods: Rats were intrathecally pretreated with TAK-242, MyDgg inhibitory peptide, or Resveratrol at a 12 h interval
for 3 days before undergoing 14-minute occlusion of aortic arch. Evan’s Blue (EB) extravasation and water content were
detected at 6, 12, 18, 24, 36, 48, and 72 h after reperfusion. EB extravasation, water content, and NF-kB activation were
increased with time after reperfusion, suggesting a bimodal distribution, as maximal increasing were detected at both
12 and 48 h after reperfusion. The changes were directly proportional to TLR, levels determined by Western blot.
Double-labeled immunohistochemical analysis was also used to detect the relationship between different cell types

of BSCB with TLR,. Furthermore, NF-kB and IL-1(3 were analyzed at 12 and 48 h to identify the correlation between
MyDgg-dependent and TRIF-dependent pathways.

Results: Rats without functional TLR4 and MyDgg attenuated BSCB leakage and inflammatory responses at 12 h,
suggesting the ischemic event was largely mediated by MyDgg-dependent pathway. Similar protective effects observed
in rats with depleted TLR4, MyDgg, and TRIF receptor at 48 h infer that the ongoing inflammation which occurred in
late phase was mainly initiated by TRIF-dependent pathway and such inflammatory response could be further
amplified by MyDgg-dependent pathway. Additionally, microglia appeared to play a major role in early phase of
inflammation after I/R injury, while in late responding phase both microglia and astrocytes were necessary.

Conclusions: These findings indicate the relevance of TLR,/MyDgg-dependent and TLR4/TRIF-dependent pathways in
bimodal phases of inflammatory responses after I/R injury, corresponding with the clinical progression of injury and
delayed onset of symptoms. The clinical usage of TLR, signaling inhibitors at different phases may be a therapeutic
option for the prevention of delayed injury.
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Introduction

Spinal cord ischemic/reperfusion (I/R) injury is a serious
complication of thoracoabdominal aortic surgery. The
injury occurs as a two-phase process that correlates with
its onset and delayed clinical progression. The first phase
includes metabolic and inflammatory processes following
ischemia, and the second one is a set of amplified inflam-
matory responses mediated by biochemical cytokines after
restoration of spinal cord blood flow [1,2]. Clinically, this
is observed as the bimodal distribution of paraplegia, in
which lower limb movement is observed immediately after
operation but later deteriorates [3-5]. This phenomenon
was reported to occur in 2% to 18% of patients, and
a total of 50% of patients displayed delayed neurological
deficits due to multifactorial causes [5]. The blood-spinal
cord barrier (BSCB), consisting of continuous capillary
endothelial cells surrounded by astrocytes and pericytes as
well as perivascular microglia, is critical to maintain spinal
cord homeostasis and neurologic function [6,7]. Impair-
ment of the BSCB may induce spinal cord edema and
progressive breakdown of BSCB integrity, which may
aggravate injury, resulting in paraplegia or even death,
thus highlighting the complexity of the injury [1,3,8,9].
Previous studies have demonstrated that Toll-like recep-
tors 4 (TLRy), a class of transmembrane proteins that can
recognize specific ligands extracellularly, are closely asso-
ciated with the inflammation that occurs after I/R injury
and mediate the pathogenesis of hind-limb function and
neuronal viability [10-12]. The myeloid differentiation
factor 88 (MyDgg) and TIR domain-containing adaptor-
inducing IFN-B (TRIF), which function via the up regula-
tion of TLR,, are the two most important adaptor proteins
that provoke the transduction of common downstream
signaling molecules, such as NF-kB, into the nucleus and
regulate the expression of target inflammatory genes
[13-15]. In the MyDgg-dependent pathway, previous stud-
ies have demonstrated that TLR, directly activates MyDgg
and thus facilitates further activation of NF-kB and down-
stream inflammatory cytokine interleukin (IL)-1f in the
early phase [10,13,16]. However, recent studies suggest
that TLR3 is not indispensable for the TRIF-dependent
pathway [17]. In the TLR, signaling pathway, TRIF is
recruited upon receiving stimuli from TICAM-2, lead-
ing to rapid activation of interferon regulatory factor
3 and beta interferon, which in turn activates TRIF
and MyDgg [15-17] and induces delayed NF-kB acti-
vation [18]. In our previous studies, we have reported
the breakdown of BSCB integrity in the spinal cord
after I/R injury [8,9]. Therefore, procedures that can
preserve the intact function of the BSCB and attenu-
ate the inflammatory responses after I/R injury would im-
prove prognosis. However, not much is known about the
underlying roles of TLR, signaling and the transduction
of its downstream adaptor receptors. The aim of this
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study is to investigate the role of TLR, in increased
BSCB leakage using a specific cell population during
a post-injury bimodal stage. We established a functional
deletion of TLR,, MyDgg, and TRIF receptor by intra-
thecal treatment with TAK-242 [19], MyDgg inhibitory
peptide (MIP) [16], or Resveratrol [20] to prevent TLR,
from interacting with its downstream receptors, namely,
MyDgg and TRIF. In addition, we explored the underlying
relevance of TLR,/MyDgg-dependent and TLR,/TRIF-
dependent pathways in the bimodal phase of inflammatory
responses after I/R injury by determining the activation of
NEF-kB and subsequent products of the proinflammatory
cytokine, IL-1f.

Materials and methods

Experimental animals

All experimental procedures were approved by the Ethics
Committee of China Medical University and were per-
formed in accordance with the Guide for the Care and
Use of Laboratory Animals (U.S. National Institutes of
Health publication No. 85-23, National Academy Press,
Washington DC, revised 1996). The rats used in this study
were all male Sprague-Dawley rats weighing between 200
and 250 g, neurologically intact before anesthesia, and
expressed normal, functional TLR,. The rats were bred in
standard cages with free access to food and water, and
were housed separately after surgery at the First Affiliated
Hospital, China Medical University.

Animal surgical procedures

The spinal cord I/R model was induced by occluding the
aortic arch for 14 min, as previously reported [21]. In
general, all rats were anesthetized with an intraperitoneal
injection of 4% sodium pentobarbital at an initial dose of
50 mg/kg. The aortic arch was exposed through a cervi-
cothoracic approach. Under direct visualization, the aortic
arch was cross-clamped between the left common carotid
artery and the left subclavian artery. A laser Doppler blood
flow monitor (Moor Instruments, Axminster, Devon, UK)
was used to confirm complete occlusion. Ischemia was
confirmed as a 90% decrease in flow measured at the fe-
moral artery that continued for 14 min, after which the
clamps were removed and followed by 72 h of reperfusion.
Sham operation rats underwent the same procedure, but
no occlusion of the aortic arch was performed.

Experimental protocol

Rats were randomly assigned to one of the five groups:
Sham, Ischemia/reperfusion (I/R), MIP, Resveratrol, and
TAK-242 (TAK) group. Continuous intrathecal injec-
tions were performed at 12 h intervals for 3 days prior
to ischemia or the induction of sham surgery. In order
to study the role of TLRy-mediated signal pathways in
I/R injury, the rats were intrathecally injected with 10 pL
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MIP (50 nmol/uL), Resveratrol (50 nmol/pL), TAK-242
(10 nmol/pL), or an equivalent volume of normal saline as
control at L, ¢ segments of the spinal cord, as previously
described [16,19,20].

Examination of blood-spinal cord barrier leakage
Measuring the water content of the spinal cord and
Evan’s Blue (EB) extravasation were, respectively, the most
common methods used for the quantitative and quali-
tative examination of BSCB leakage after spinal cord
I/R injury. The percentage of water content was calcu-
lated as: (wet weight — dry weight)/wet weight x 100, using
a wet-dry method.

For quantification of EB extravasation, 30 g/L EB
(45 mg/kg; Sigma, St. Louis, MO, USA) was slowly ad-
ministered intravenously in the tail vein 60 minutes be-
fore sacrificing the animals. After soaking the tissues in
methanamide for 24 h (60°C) and centrifugation at
20,000 x g for 20 min, the absorption of the supernatant
was detected at 632 nm and reported as the amount of
EB per wet tissue weight (ug/g). For dye fluorescence
measurements, the tissue was fixed in 4% paraformalde-
hyde, then sectioned (10 pm) and visualized using a
BX-60 (Olympus, Melville, NY, USA) fluorescence micro-
scope (green zone).

Immunofluorescence staining

Double immunofluorescence analysis was performed to
measure the activation and localization of TLR, after I/R
injury. The spinal cord was fixed and sectioned into 10-um
slices with a Leica CM3050 S cryostat. The sections were
blocked with 10% bovine serum albumin for 1 h at room
temperature and incubated overnight at 4°C with the
primary antibodies: mouse anti-TLR, (1:100, Abcam,
Cambridge, UK), rabbit anti-CD31 antibody (1:800, Abcam),
rabbit anti-CD13 antibody (1:500, Abcam), rabbit anti-
Iba-1 antibody (1:800, Wako, Germany), and rabbit anti-
GFAP antibody (1:800, Abcam). After incubation with
Alexa 594-conjugated donkey anti-mouse IgG (1:500,
Molecular Probes, Eugene, Oregon, USA) and Alexa
488-conjugated donkey anti-rabbit IgG (1:500, Molecular
Probes) for 2 h at room temperature, the images were cap-
tured using a Leica TCS SP2 (Leica Microsystems, Buffalo
Grove, IL, USA) laser scanning microscope and photo-
graphed by the attached digital camera to determine the
number of immunoreactive cells. Non-specific staining
was determined by omitting the primary antibody. The
data were expressed as numbers of positive cells/area/
spinal section + standard error mean (SEM).

Biochemical analysis

The spinal cord was collected, homogenized, and centri-
fuged. The level of IL-1p was determined by ELISA kit
(R & D Systems, Minneapolis, MN, USA). According to
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the manufacturer’s instructions, the absorbance was de-
tected at 450 nm and the content of each sample was
calculated from the standard curve and the quantity of
IL-1P was expressed as pg/mg protein.

Western blot analysis

The expression of TLRy, MyDgg, TRIF, and NF-kB p65
in spinal cord tissue were determined by Western blot.
The rats’ spinal cords were homogenized, and the total
proteins were purified using cell and tissue protein extrac-
tion reagents according to manufacturer’s instructions (KC-
415; KangChen, Shanghai, China). The antibodies used in
this experiment were mouse monoclonal anti-TLR, (1:500,
Abcam), rabbit polyclonal anti-MyDgg (1:500, Abcam),
rabbit polyclonal anti-TRIF (1:500, Abcam), and rabbit
polyclonal anti- NF-kB p65 (1:500, Abcam), along with
horseradish peroxidase conjugated secondary antibodies
(Bioss, Beijing, China). Semi-quantitation of scanned
images was performed using Quantity One software
(Bio-Rad Laboratories, Milan, Italy).

Statistical analysis

All data were expressed as means * standard error mean
(means + SEM) and analyzed by SPSS software (version
17.0, SPSS Inc., Chicago, IL, USA). All variables mea-
sured in this study were normally distributed, and the
groups were compared with Student’s ¢-test or one-way
analysis of variance (ANOVA), followed by Newman-
Keuls post-hoc analysis. A P value of < 0.05 was consi-
dered statistically significant.

Results

Effects of BSCB leakage after I/R

To determine the time frame of BSCB leakage and ex-
plore the underlying mechanisms, we performed a time
course of I/R injury from 6 to 72 h post-operation deter-
mined by the extravasation of EB dye, which was visual-
ized as red fluorescence under the fluorescent microscope
(Figure 1A). Since the L, ¢ segments of the spinal cord
are most vulnerable to ischemic injury [22], the increased
BSCB leakage was analyzed at this site. Our observations
suggest that the maximal differences in EB extravasations
between the Sham group and I/R group occurred at 12
and 48 h after surgery. Quantification of EB content in
the injured spinal cord revealed that it reached max-
imal EB extravasations in the I/R group at 12 h, followed
by delayed and aggravated BSCB leakage beginning at
36 h, peaking again at 48 h (Figure 1B). Similarly, diffe-
rences in water content attributed to the increased BSCB
leakage in the I/R group also had a bimodal distribution,
peaking at 12 and 48 h (Figure 1C). There were significant
differences between the two groups at all observed time
points (P < 0.05 vs. Sham group).
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Figure 1 Time dependent progression of BSCB permeability changes after spinal cord ischemia/reperfusion (I/R) injury. (A) Effects on
Evans blue (EB) extravasation in the Sham and I/R groups along the entire time course from 6 to 72 h after surgery. I/R-induced a significant
increase in EB extravasations at each observed time point, with the greatest intensity at 12 and 48 h, especially in the gray matter. Scale bars =200 um.
(B) Quantification of EB content of the spinal cord (ug/g). (C) Quantification of the water content of the spinal cord. All data are represented as

Effects of TLR, immunoreactivity after I/R
Immunofluorescence and Western blot analyses for TLR,
performed during the time course of I/R injury were
shown in Figure 2A. The expression of TLR, significantly
increased with time in spinal cords of the I/R group,
where the TLR, protein was expressed at maximum levels
at 12 and 48 h after surgery.

Blocking effects of the TLR, pathway after I/R

We established a functionally compromised TLRy, MyDgg
and TRIF by intrathecal pretreatment with TAK-242, MIP,
and Resveratrol, and analyzed the blocking effects of each
group at 12 and 48 h after surgery since BSCB leakage
was maximal at these two time points. As the cross-talk in
signal transduction used to verify the specification and
blocking effects of the inhibitors, the changes in protein
level of TLR,, MyDygg, and TRIF were detected by Western
blot (Figure 3A-C). Quantitative Analysis showed that I/R
injury induced TLR,4, MyDgg, and TRIF expressions in all
groups compared to the Sham group at 12 and 48 h after
injury (Figure 3 D-F, all P < 0.05 vs. Sham group). Pretreat-
ment with TAK-242 effectively prevented the up regula-
tion of TLR, without much influence on expressions of
MyDgg and TRIF, suggesting satisfactory specificity and ef-
fectiveness of TAK-242 (Figure 3A and D, P <0.05). Like-
wise, following targeted down regulation of MyDgg and

TRIF by intrathecal pretreatment with MIP and Resvera-
trol, respectively, there were no significant differences in
expressions of the other two indicators (TLR, and TRIF
or TLR, and MyDygg) (Figure 3B and E vs C and F, both
P> 0.05).

Effects of the TLR, pathway on colocalization of different
cell types in blood spinal cord barrier after I/R

Continuous capillary endothelial cells, pericytes, astro-
cytes, and perivascular microglia are the major cellular
components of the BSCB. With the understanding that
the TLR, pathway may play an important role in the in-
flammatory damage to BSCB integrity, we further identi-
fied a specific cell population in BSCB with the following
cellular markers: CD31 (platelet endothelial cell adhe-
sion molecule-1, capillary endothelial cell marker), CD13
(aminopeptidase-N, pericyte marker), Iba-1 (microglial
marker), and GFAP (astrocyte marker) (Figure 4). Based
on our results, the majority of TLR, was co localized with
the distribution of Iba-1-positive microglia in rats of the
I/R group at both 12 and 48 h after surgery, but not
in sham-operated ones, confirming that TLR, was indeed
upregulated in microglia. Similarly, the increasing numbers
of double-labeled astrocytes were found in rats of the I/R
group at 48 h after surgery, suggesting the involvement
of astrocytes. However, no identical fluorescence label
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Figure 2 Time course of TLR, activation in the spine after I/R injury. (A) Representative immunofluorescence of TLR, Prominent TLR,
immunoreactivation was observed in both dorsal horns of the spinal cord in operated rats. Spinal cord I/R-induced TLR,-up regulation increased
with time and peaked at 12 and 48 h after surgery. Scale bars =100 um for the 100x and 50 pum for the 400x images. (B) Representative Western
blot analysis and integrated density values (IDVs) of TLR, activation. The IDVs of TLR, in the I/R group with different reperfusion time points were
calculated after normalizing against the Sham group and presented as relative protein expression units. The maximal of IDVs were observed at

12 and 48 h after surgery. All data are represented as means + SEM (n =8 per group). *P < 0.05 vs. Sham group.

of TLR, was found in capillary endothelial cells and
pericytes of rats undergoing ischemia or sham-operation
at the above time points. Quantification of TLR, co-
localization in Figure 4C confirmed that the majority
of TLR, was expressed in microglia at 12 h after in-
jury, while at 48 h after surgery, TLRywas comparably
expressed in both microglia and astrocytes (all P < 0.01 vs.
Sham group).

Additionally, we determined the effects of the TLR,
pathway on double-labeled microglia and astrocytes at
48 h after I/R injury for the most double-labeled cells
observed at that time. As shown in Figure 4B, the ma-
ximal number of double-labeled microglia and astrocytes
were both observed in the I/R group. Compared with
I/R group, the number of double-labeled microglia and
astrocytes were decreased the most in the TAK group and

Sham IR TAK MIP Resveratrol
e S WS e ssss 35 kD

48h s IS SWmm Swee s 35 kD
f-actin w— — — — e 43 kD

OSham mI/R sTAKOMIP 3R

Sham I/R TAK MIP Resveratrol

12n . — - a— S 56 KD
48h ™ e . s s 66 kD
foactin  GE— - e— G e 43 kD

oSham ml/R sTAKOMIP R

L]

48h 12h 48h

Figure 3 Blocking effects of specific binding protein on TLR,;, MyDgg, and TRIF protein. (A-C) Representative Western blot analysis of TLR,,
MyDgg, and TRIF protein in L4_¢ segments of spinal cord at 12 and 48 h after I/R injury. (D-F) The integrated density values (IDVs) in each group
with different reperfusion time points were calculated after normalizing against 3-actin and presented as relative protein expression units. Data
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Figure 4 Double-labeled immunofluorescence TLR receptor and specific cell population in blood spinal cord barrier after spinal cord
I/R injury. (A) Representative immunohistochemical localization of capillary endothelial cells (CD31; green), pericytes (CD13; green), microglia
(Iba-1; green), astrocytes (GFAP; green), and Toll-like receptor (TLR,; red) in spinal cords of sham-operated or operated rats at 12 and 48 h after
the surgical procedure, respectively. Scale bars=100 um for the 200x images. (B) Effects of TLR, signaling on TLR4 co-localization cells.
Representative double-labeling micrographs show that intrathecal pretreatment with TAK-242, MIP, and Resveratrol before I/R injury significantly
prevented microglia and astrocytes upregulated expression of TLR, at 48 h after the surgery. Scale bars =50 um for the 400x images. (C) Quantification
of TLR,-positive microglia and TLR4-positive astrocytes in the spinal cords. Data are presented as mean + SEM (n=6). **P < 0.01 vs. Sham group;

the least in the MIP group (P < 0.05 vs. I/R group, P > 0.05
vs. MIP group). Almost no double-labeled glial cells were
detected in the Sham group at the above time point.

Effects of the TLR, pathway on BSCB leakage after I/R

We next determined the role of the TLR, signaling cas-
cade in BSCB leakage. As shown in Figure 5A, maximal
leakage, as monitored by amount of EB extravasation,
was noted in the I/R group at 12 and 48 h after surgery
(P<0.01 vs. Sham group). Intrathecal pretreatment with
TAK-242 prevented the increased leakage of BSCB at
both time points recorded (both P < 0.05 vs. I/R group).
Comparing EB extravasation among groups, highly in-
tense red fluorescence was observed in the I/R and
Resveratrol groups at 12 h, which intensified at 48 h

in all groups, especially in the gray matter of the I/R and
MIP groups. Minimal EB extravasation was detected in
the Sham group at the above two time points (P <0.05
vs. I/R group).

Additionally, assessments of water content showed
similar results at 12 and 48 h after surgery, as seen in
Figure 4C. It could be inferred that I/R increased the
water content due to spinal cord edema (P<0.05 vs.
Sham group), while intrathecal transplantation with TAK-
242 attenuated the increase in water content (P < 0.05 vs.
I/R group). Of note, the depletion of MyDgg by intrathecal
transplantation with MIP only attenuated these effects at
12 h (P <0.05 vs. I/R group); a similar effect was observed
at 48 h in the group lacking TRIF function (P <0.05 vs.
I/R group).
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Figure 5 Effects of TLR4 signaling on BSCB dysfunction after I/R injury. (A) Representative EB dye after intrathecal injection with TAK-242,
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MIP, and Resveratrol. Almost no red fluorescence was seen in spinal cord parenchyma in the Sham group at 12 and 48 h after injury. Much more
red fluorescence could be seen in the I/R and Resveratrol groups at 12 h. These increased in intensity at 48 h in all groups after injury, especially
in the gray matter of the I/R and MIP groups. Minimal EB red fluorescence was seen in the Sham and TAK groups at the above two time points.
(B) Quantification data of EB content of spinal cord (ug/g). (C) Quantification of the water content of the spinal cord. All data are represented as
mean + SEM (n =8 per group). Scale bars =50 pm for 100x images. **P < 0.01 vs. Sham group; ## P <0.01 vs. I/R group; & P < 0.05 vs. TAK group.




Li et al. Journal of Neuroinflammation 2014, 11:62
http://www.jneuroinflammation.com/content/11/1/62

Effects of the TLR, pathway on NF-kB activation and
inflammatory cytokines after I/R

Finally, we examined the levels of NF-kB and its down-
stream inflammatory cytokine proteins after intrathecal
pretreatment with TAK-242, MIP, or Resveratrol. As pre-
sented in Figure 6, I/R injury greatly induced NF-kB in
comparison with the sham group at 12 and 48 h after
surgery (P <0.05 vs. Sham group), and such induction
was accompanied with significantly increased IL-1(
(P<0.05 vs. Sham group). Pretreatment with TAK-242
inhibited NF-xB and IL-1p expression in the spinal
cord after injury at both time points (P<0.05 vs. I/R
group). To compare the effects on NF-kB and IL-1f after
pretreatment with MIP or Resveratrol, NF-xB and IL-1p
were detected in the I/R group and the Resveratrol group
at 12 h; both NF-«B and IL-1f were significantly increased
in all groups at 48 h, especially in the rats of the I/R and
MIP groups (P < 0.05 vs. I/R group).

Discussion

Spinal cord I/R injury after thoracic aortic surgery is in-
variably associated with dysfunction of the BSCB and
plays a fundamental role in the progression of several
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Figure 6 Effects of TLR, signaling on NF-kB activation and
inflammatory cytokines after I/R. (A) Representative Western blot
and quantitative protein analysis of NF-kB in the spinal cord at 12
and 48 h after intrathecal pretreatment with TAK-242, MIP, and
Resveratrol for 3 days. (B) The relative integral density values were
calculated after normalizing against 3-actin in each sample.

(C) Quantification of IL-13 production in spinal cord at 12 and 48 h
after I/R injury, as assessed by ELISA. **P < 0.01 vs. Sham group;

## P <001 vs. I/R group; & P < 0.05 vs. MIP group.
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unpredictable and disastrous complications, such as spinal
cord swelling and secondary nerve injury, which account
for much of the morbidity and mortality of this condition
[4,5]. Spinal cord edema is often long lasting and resistant
to therapeutic intervention. Recently, TLRs, especially
TLR4, have gained extensive attention for their important
roles in various models of I/R injury [1,18]. In our previ-
ous study, we demonstrated that increased activation
of TLR, in the spinal cord was associated with increases
of BSCB leakage after I/R injury. Our present study is
the first attempt to further characterize the inflamma-
tion that occurs in a specific cell population after spinal
cord I/R injury and suggests the functional relevance of
TLR4-mediated downstream signal transduction during
the bimodal stage after injury.

With an improved understanding of spinal cord I/R
injury, the damage sustained during thoracoabdominal
aortic occlusion has been classically defined as an initial
ischemic event and a delayed reperfusion injury, corre-
sponding with the clinical presentation of bimodal distribu-
tion of spinal cord injury [1-3]. Clinically, the manifestation
of immediate severe spinal cord injury is rare. Usually, pa-
tients experience delayed neurological deficits and develop
paraplegia in the several hours to days after surgery, which
highlights the pathological mechanisms defined by the re-
sponses in the ischemic phase, and an ongoing amplifica-
tion of molecular insults during the reperfusion phase
[23]. After I/R injury, the cytokines released by local cellu-
lar populations in the early phase may cause increased ac-
cumulation of inflammatory cells, and the chemokines
released amplify inflammatory responses, leading to the
clinical presentation of functional deficits [24,25]. As de-
monstrated in our previous study, increased BSCB leakage
closely associated with invasion of exogenous ligands in-
ducing immune and inflammatory responses were found
during the course of spinal cord I/R injury, as evaluated
by extravasation of EB dye [8,9]. Similarly, in this study,
the bimodal distribution of EB extravasations was clearly
observed as two phases, one stage from 6 to 18 h after sur-
gery which continued for several hours, and the later one
began at 36 h and peaked at 48 h (Figure 1), paralleling
the clinical manifestation of an early ischemic phase with
great risks of delayed and exacerbated injury, such as
paralysis, two days after surgery [4,5].

A growing body of evidence indicates the important
role of TLR, in the evolution of an inflammatory re-
action after I/R injury [16,19]. The stimulation from
ischemic or necrotic cells causes TLR, activation, sub-
sequent translocation of NF-kB to the nucleus, and
the production of proinflammatory cytokines and che-
mokines [10,16]. Similarly, the immunohistochemistry
data in our study confirm the essential role of TLR, in the
inflammatory processes associated with increased BSCB
leakage. Significantly, our study lies in the understanding
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of the correlation between the TLR,-mediated MyDgg-
dependent and TRIF-dependent signaling pathways dur-
ing the bimodal stage after I/R injury. Therefore, we chose
12 and 48 h time points at which maximal changes were
reached after I/R injury to further explore the role of
TLRy-mediated downstream signaling. It is essential
to develop potential therapies targeting these points
to attenuate and avoid subsequent injury. Some inves-
tigations have already reported the effects of TAK-242,
MIP, and Resveratrol on the inhibiting functions of TLR,
and its downstream adaptor receptors, MyDgg and TRIF,
which receive the stress stimulation [16,19,20]. In this
study, we depleted the function of the TLR, signaling
pathway by continuous intrathecal injection with TAK-
242, MIP, or Resveratrol at a 12-h interval 3 days before
surgery. The effects of the inhibitors were detected by
Western blot. Based on our results, the protein levels
(Figure 3A-C) and integrated density values (Figure 3D-F)
of TLRy, MyDgg, and TRIF in the I/R group were obvi-
ously higher than those in rats intrathecally pretreated
with TAK-242, MIP, or Resveratrol, as well as those in the
Sham group at both observed time points. Therefore,
TAK-242, MIP, and Resveratrol employed before reperfu-
sion significantly prevented their functions from receiving
the reperfusion-induced stimulation. However, pretreat-
ment with only one of the inhibitors lead to changes in
three indicators (TLR4, MyDgg, and TRIF) in each group
simultaneously. Therefore, it is important to further assure
specificity of each inhibitor by detecting whether there is
cross-talk in signal transduction. As tested herein, TAK-
242 specifically binds the TLR, receptor without much
impact on the functions and expressions of adaptor recep-
tors MyDgg and TRIF downstream. Likewise, MIP and
Resveratrol were proven to solely decrease the protein ex-
pression of MyDgg and TRIE, respectively, demonstrating
the reliability of intrathecal injection with specific binding
proteins to explore the role of the TLR, pathway, as
performed in our study (Figure 3).

Our study showed that I/R injury caused vascular
events of BSCB in segments most vulnerable to ischemia
and exhibited more pronounced vascular disruptions at
48 h than those at 12 h after surgery. The BSCB act as a
metabolic barrier to strictly regulate molecular exchange
between the circulating blood and spinal cord, and
strictly controls the spinal cord microenvironment re-
quired for normal neuronal function and micro environ-
mental homeostasis [6,9,26]. Increased BSCB leakage
would expose the spinal cord to endogenous ligands and
exogenous invading pathogens in the circulation and ag-
gravate inflammatory responses and neurotoxic effects
in the development and recovery associated with spinal
cord injury, resulting in irreversible damage to the
physiological functions of aesthesia and kinesis, as well
as to bladder, bowel, and sexual functions following the
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injured plane. Moreover, the BSCB may determine the
innate immune reaction [26]. Therefore, the exploration
of the cellular compositions of the BSCB implicated in
TLR, activation will greatly contribute to the better
understanding the physiological function or pathological
development in the early and late phases of inflammation
after I/R injury. As reported in previous studies, glial acti-
vation occurred in response to ischemia and the responses
were very rapid, especially in microglia, which changed in
morphology and increased in number within the first few
minutes to hours after reperfusion [1,3,7,26], while astro-
cytes were observed to be mildly increased over 8 h after
reperfusion [26]. Similarly, the microglia increased in
number and showed intense staining in the spinal cord
after surgery and peaked at 12 and 48 h, whereas the
GFAP staining became intense 24 h after reperfusion
and peaked at 48 h, suggesting that increased BSCB
leakage may be attributed to glial activation through
their membrane-bound receptor TLR, which is closely
associated with inflammatory reactions (Figure 4). In-
creasing evidence has shown that there is an important
and complicated signal transmission within activated
neuralgia in response to spinal cord injury [6,7,18]. To
explain the different activation phases of glial cells, one
can easily consider the different degrees of BSCB leakage
and the different roles of glial cells involved. Perivascular
microglia surrounding the BSCB are considered as the
first actors to remove tissue, cells debris, or macromolecu-
lar proteins penetrating through functional leakage of the
BSCB, as suggested in the model of spinal cord ischemia
and compressive injury [7,26,27]. Astrocytes have been
demonstrated to play a major role in homeostasis of the
BSCB and recovery of neurological function after ischemia
[7]. In the present study, compared with the widespread
activation of microglia both in the early (12 h) and late
phase (48 h) after surgery, the increases in GFAP immu-
noreactivity were mainly distributed in spinal gray matter,
where the capillaries were more numerous and formed a
dense capillary bed in comparison with white matter.
Thus, astrocytes were considered to be hyper-responsive
states in cases of organic damage of BSCB. In addition,
the effects of the inhibitors on double-labeled glial cells
were chosen to quantify at 48 h after surgery for the
maximal activation based on micrographs. As shown
in Figure 4B and C, compared with I/R group, the
number of double-labeled microglia and astrocytes in
groups pretreated with TAK-242, MIP, and Resveratrol,
respectively, decreased the most in the TAK group, sug-
gesting that the relatively intact microenvironment of the
spinal cord contributed to the weak responses of glial cells
in the BSCB lacking the functional TLR, receptor after
surgery. Comparing the effects of MIP and Resveratrol
treatment, immunofluorescence staining and quantifica-
tion data demonstrated that I/R-induced elevated double-
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labeled microglia and astrocytes were significantly de-
creased in the Resveratrol group, whereas less so in the
MIP group, indicating a major involvement of the TLR,-
TRIF-dependent pathway 48 h after surgery.

Up regulating TLR4 and NF-kB was accompanied with
the production of proinflammatory cytokines. As expected,
our results revealed increases in NF-«kB and IL-1f with in-
creasing time after I/R injury, signifying the amplified and
aggravated inflammatory responses in pathogenesis in the
spinal cord. Previous studies have demonstrated the cap-
acity of TLRj3 to activate TRIF [15,28] and that TLR,
directly activated MyDgg [16,19]. With recent advance-
ments in this area, some studies have indicated that
TLRsis not indispensable for the TRIF-dependent pathway
while the TLR, receptor has the potential to activate the
TRIF-dependent pathway upon receiving a signal from
MyDgg-dependent pathways [15]. The signals that bridged
through TICAM-, to TICAM-, led to the recruitment of
TRIF and TRAM in a cascade [15,29], resulting in the
rapid production of cytokines and the late phase activation
of NF-kB and mitogen-activated protein kinases, thus
exerting positive feedback on MyDgg-activation [30,31].
Therefore, based on our data, the ongoing cascade of in-
flammatory responses involves the activation of both the
MyDgg and TRIF pathways.

IL-1P is the most commonly implicated protein in in-
flammatory responses and exhibits biphasic distribution
in various models of I/R injury [2,3,32]. These studies re-
vealed that IL-1p significantly increased and remained
high in the reperfusion period, and that heightened
IL-1p were associated with both early ischemic and late
reperfusion injury [2,3,32,33]. Based on our results, we
found analogously biphasic IL-1p responses during the re-
perfusion period since the levels expressed at 12 and 48 h
were much higher than those at 24 h and were in accord-
ance with the activation of NF-«B. It was intriguing to ex-
plore the temporal relationship between TLR,/MyDgg and
TLR,/TRIF. Similar to the results in our study, O’Neill
and Bowie suggested that the expression of NF-kB oc-
curred in two phases after TLR, activation [17]: MyD88
mediated events in the early phase, while TRIF mediated
the later phase. We found that there was a significant in-
crease in NF-kB release and IL-1B production at 12 h.
Nevertheless, contrasting results were observed at 48 h in
the Resveratrol group (Figure 4), indicating that MyDgg
and TRIF dependence occurred in the early and late
phases, respectively.

Of note, sequential activation of microglia and astro-
cytes were supported by immunofluorescence staining,
but not necessarily in that order given the complexity of
in vivo experiments. Nevertheless, a sustained majority
of TLR, expression occurs in microglia throughout the
inflammatory responses, and the increasing involve-
ment of astrocytes with time in the late phase might
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be an explanation for the delayed neurological deficits
[3,7,26,27,34]. Further in vitro studies still need to be
conducted to identify the development and mode of
action of these inflammatory mediators to better elu-
cidate the mechanism underlying the pathogenesis.

Taken together, our data suggest that there could be
different phases of spinal cord I/R injury. Inflammation
is a subsequent event during the bimodal stage after
injury. The early phase of I/R injury in the spinal cord
was found to be largely TLR,/MyDgg-dependent and
microglia-dependent, and the following late phase was
found to be mainly dependent on TLR,/TRIF activation,
which was amplified by MyDgg signaling with the involve-
ment of both microglia and astrocytes. These findings ex-
plain why several therapeutic treatments have failed in
patients with I/R injury. A novel and ideal therapy that
would address the different phases of injury and inflam-
mation may be valuable in preventing delayed injury and
its clinical manifestations.
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