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Abstract

Background: Inflammatory processes are increased in the Parkinson's disease (PD) brain. The
long-term use of nonsteroidal anti-inflammatory drugs has been associated, in retrospective
studies, with decreased risk for PD, suggesting that inflammation may contribute to development
of this disorder. The objective of this study was to determine the extent of complement activation,
a major inflammatory mechanism, in PD.

Methods: Substantia nigra specimens from young normal subjects (n = I1-13), aged normal
subjects (n = 24-28), and subjects with PD (n = 19-20), Alzheimer's disease (AD; n = 12—13), and
dementia with Lewy bodies (DLB; n = 9) were stained for iC3b and C9, representing early- and
late-stage complement activation, respectively. Numbers of iC3b*, C9*, and total melanized
neurons in each section were counted in a blinded fashion. Nonparametric analyses were used to
evaluate differences between groups and to evaluate correlations between complement staining,
numbers of melanized neurons, and the duration of PD.

Results: Lewy bodies in both PD and DLB specimens stained for iC3b and C9. Staining was also
prominent on melanized neurons. The percentage of iC3b* neurons was significantly increased in
PD vs. aged normal and AD specimens, and in young normal vs. aged normal specimens. C9
immunoreactivity was significantly increased in PD vs. AD specimens, but unlike iC3b, the increased
C9 staining in PD and young normal specimens did not achieve statistical significance vs. aged
normal specimens. iC3b and C9 staining in PD specimens was not correlated with the numbers of
remaining melanized neurons, nor with the duration of PD.

Conclusion: Complement activation occurs on Lewy bodies and melanized neurons in the PD
substantia nigra. Early complement activation (iC3b) is increased on melanized neurons in PD vs.
aged normal specimens, and late-stage complement activation (C9) also tends to increase. This
latter finding suggests that complement activation may contribute to loss of dopaminergic neurons
in some individuals with PD. Complement activation on melanized neurons appears to decrease
with normal aging, suggesting a possible neuroprotective role for this process in the normal
substantia nigra.
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Background

Multiple neurotoxic processes have been described in the
Parkinson's disease (PD) brain including inflammation,
oxidative stress, excitotoxicity, and mitochondrial dys-
function [1]. The evidence for inflammation in PD
includes gliosis [2,3], increased major histocompatibility
complex expression on microglia [2,4], microglial phago-
cytosis of degenerating neuromelanin-containing neu-
rons [5], and increased inflammatory cytokines [6,7].
Inflammation has also been reported in some animal
models of PD [8,9]. The significance of inflammation in
PD is unclear. Two retrospective studies indicated an asso-
ciation between the long-term use of nonsteroidal anti-
inflammatory drugs (NSAIDs) and decreased risk for PD
[10,11], suggesting that inflammation may be important
in the development of this disorder; however, a third ret-
rospective study found no evidence for protective effects
of NSAIDs against PD [12].

Complement activation is a major inflammatory process
which promotes the removal of microorganisms and cell
debris, and the processing of immune complexes. Three
interrelated pathways, the classical, alternative, and man-
nan binding lectin-mediated cascades, have been
described. Proteins generated early in this process func-
tion as chemotactic factors [13,14], opsonins [15,16], and
anaphylatoxins [17]. Full activation of any of these path-
ways results in the generation of C5b-9, the membrane
attack complex (MAC), which is neurotoxic [18]. In con-
trast to Alzheimer's disease (AD), in which complement
activation has been extensively investigated [reviewed by
McGeer and McGeer [19], 2002, and Shen and Meri [20],
2003], few studies have addressed this issue in PD.
Yamada et al. [21] reported staining of Lewy bodies in the
PD substantia nigra for both early-stage (C3d and C4d)
and late-stage (C7 and C9) complement proteins, and
C3d and C4d staining on Lewy bodies was subsequently
reported in the brain stem from subjects with dementia
with Lewy bodies (DLB) [22]. However, a third study
found no complement reactivity on Lewy bodies in the
cingulate gyrus in either PD or DLB [23]. Because of these
conflicting results, the extent of complement activation in

Table I: Subject ages and post-mortem intervals.
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PD is unclear. The objective of the present study was to
further examine this issue.

Methods

Brain specimens

Paraffin-embedded, formalin-fixed substantia nigra speci-
mens were obtained from young normal (YN) subjects (n
= 11-13), aged normal (AN) subjects (n = 24-28), and
subjects with PD (n = 19-20), AD (n = 12-13), and DLB
(n =9). These specimens were obtained from the Harvard
Brain Tissue Resource Center (McLean Hospital, Belmont,
MA), the University of California at Irvine Institute for
Brain Aging and Dementia (Irvine, CA), the Massachusetts
General Hospital Alzheimer Disease Research Center
(Charlestown, MA), and the University of California
School of Medicine (Department of Medical Pathology,
Sacramento, CA). Each group (YN, AN, PD, AD, and DLB)
included specimens from all four brain banks. Means (+
SEM) and ranges for subject ages and post-mortem inter-
vals (PMI) are shown in Table 1. PMI means were similar
between groups, and subject ages differed only between
YN and the other groups.

Immunocytochemical staining for iC3b and C9

Formalin-fixed, paraffin-embedded sections of 6 - 8 pm
thickness were placed on Superfrost Plus slides (Cardinal
Health, McGaw Park, IL) and heated for 1 hrat 56°C. The
sections were subsequently deparaffinized and rehydrated
through graded ethanol baths, then rinsed in Tris buffered
saline (TBS; 0.1 M Tris, 0.85% NaCl, pH 7.6). (This and all
subsequent rinses were performed three times at five min
intervals.) They were treated for 4 min with 88% formic
acid (Fisher Scientific, Fair Lawn, NJ), then boiled for 5
min in citrate buffer, pH 6.0 (Antigen Unmasking Solu-
tion, Vector Laboratories, Burlingame, CA). After rinsing
in TBS, the sections were treated with 3% H,0,/10%
methanol in TBS for 30 min to eliminate endogenous per-
oxidase activity, rinsed in TBS with 0.1% Triton X-100
(hereafter, TBS-T), then treated with TBS-T with 1%
bovine serum albumin (TBS-T-BSA) and 10% normal
horse serum (Vector) for 30 min. The specimens were
then incubated overnight at room temperature with
mouse monoclonal anti-human iC3b (Quidel Corp., San

Group n Age (yrs) Age range PMI (hrs) PMI range (hrs)
YN 11-13 432+ 1.92 24-53 158 £2.0 3.0-24.0
AN 24-28 83.7 2.1 66-104 10.8 £ 1.4 0.3-23.0
PD 19-20 80.2 £ 2.1 6691 11.2+£23 2.0-29.0
AD 12-13 76819 61-83 74+ 1.6 3.0-23.3
DLB 9 78319 70-86 89+20 1.6-16.3

PMI means were similar between groups, and subject ages differed only between young normal specimens and the other groups. Data are
expressed as means * SEM. (2p < 0.05 vs. other groups; abbreviations: AD, Alzheimer's disease; AN, aged normal; DLB, dementia with Lewy bodies;

PD, Parkinson's disease; PMI, post-mortem interval; YN, young normal)
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Diego, CA; 1:200 dilution, final concentration 5.5 pg/ml)
or goat anti-human C9 (Quidel; 1:5000 dilution, final
concentration 11 pg/ml). Negative controls, performed
for each specimen, consisted of substituting the nonse-
creting mouse hybridoma MOPC-21 (mouse 1gG1-kappa;
Sigma-Aldrich, St. Louis, MO) (1:164 dilution, final con-
centration 5.5 pg/ml) for anti-iC3b serum, and normal
goat serum (Vector; 1:5000 dilution) for goat anti-C9.
After rinsing in TBS-T, biotinylated horse anti-mouse IgG
(for iC3b staining) or biotinylated horse anti-goat IgG
(for C9 staining) (both from Vector; 1:200 dilution in
TBS-T-BSA) was applied at room temperature for one hr
(for iC3b) or 90 min (for C9), followed by rinsing in TBS
and then avidin-biotin-horseradish peroxidase conjugate
(ABC reagent, Vector; 1:100 dilution in TBS-BSA) for 1 hr.
Sections were developed with 3,3'-diaminobenzidine
(DAB)/H,0, with nickel enhancement (DAB Peroxidase
Substrate Kit, Vector), then dehydrated in ethanol baths to
xylene and coverslipped with Cytoseal-60 Mounting
Medium (Richard-Allan Scientific, Kalamazoo, MI). AD
hippocampus specimens from the University of Califor-
nia at Irvine Institute for Brain Aging and Dementia were
included as positive controls in each experiment.

Statistical analyses

The number of neuromelanin-containing neurons (here-
after, "melanized neurons") in each substantia nigra sec-
tion (one side only), and the number of these neurons
immunoreactive for iC3b or C9, were counted by one
observer (D.L.) in a blinded fashion with the 40x objec-
tive. (Neuromelanin, a by-product of dopamine metabo-
lism [24], is considered to be a marker for dopaminergic
neurons in the substantia nigra, although some
dopamine-containing neurons in this region are non-mel-
anized [25]).

The percentage of iC3b* or C9+melanized neurons and
number of melanized neurons in each specimen were
compared between groups via the Kruskal-Wallis test and
subject ages and PMI were compared between groups by a
one-way ANOVA. When significant differences between
groups were detected, pairwise comparisons were then
performed to determine the location(s) of these differ-
ences. Data from iC3b+, C9+, and total melanized neuron
counts were analyzed with a Wilcoxon Rank Sum test,
with the p-values adjusted for multiplicity of testing via
Hochberg's procedure [26]. The two demographic factors,
subject age and PMI, were compared between groups in a
pair-wise fashion via the Tukey-Kramer HSD. Correlations
between variables (percentages of C3b* and C9+melan-
ized neurons, PMI, age, number of melanized neurons,
and duration of PD) were determined by Spearman's rank
correlation coefficient. The overall level of statistical sig-
nificance for all tests was 0.05.

http://www.jneuroinflammation.com/content/3/1/29

Results

Lewy bodies were immunoreactive for both iC3b (7 of 20
PD specimens, 6 of 9 DLB specimens) and C9 (11 of 19
PD specimens, 9 of 9 DLB specimens). Staining was also
detected on melanized neurons (cell bodies, axons, and
melanin fragments), occasional non-melanized neurons,
glia, and, in AD specimens, senile plaques. In PD speci-
mens, many of the iC3b+and C9+ melanized neurons had
few remaining melanin granules. No cellular staining was
present in negative controls, although faint vascular stain-
ing was observed in a few specimens. Staining for iC3b
and C9 is shown in Figs. 1 and 2, respectively. There was
marked variation in the percentages of immunoreactive
melanized neurons for different specimens within each
group, with little or no staining in some specimens and
more than 25% staining in others; staining even exceeded
50% of melanized neurons in a few specimens. Comple-
ment immunoreactivity of melanized neurons generally
was not localized to a particular sector (lateral, middle, or
medial) of the substantia nigra.

Statistical analysis of iC3b staining revealed significant
differences among groups (p = 0.003), and pairwise com-
parisons indicated that the percentage of iC3b* melanized
neurons was significantly increased in PD vs. both AN and
AD specimens (p = 0.0011 and 0.0099, respectively), and
in YN vs. AN specimens (p = 0.0146) (Fig. 3). Total num-
bers of melanized neurons were significantly decreased in
PD vs. AN, YN, and AD specimens, and in DLB vs. AN and
AD specimens (Fig. 4). iC3b immunoreactivity was signif-
icantly correlated with numbers of melanized neurons
only in YN specimens (r = 0.63, p = 0.016). There was no
correlation in PD specimens between the percentage of
iC3b* melanized neurons and the duration of PD (r =
0.09), and no gender differences were detected on pooled
data from all groups for iC3b staining.

C9 staining yielded generally similar results to those for
iC3b. This was reflected by significant correlations
between the percentages of C9+and iC3b* melanized neu-
rons in all groups (r values ranging from 0.67 to 0.82, all
p < 0.02) except for DLB (r = 0.35, p = 0.40). C9 staining
was increased in PD vs. AD specimens (p = 0.0048; Fig. 5).
Unlike iC3b, however, the trends towards increased C9
staining in PD vs. AN specimens, and in YN vs. AN speci-
mens, were not statistically significant (p = 0.04 [not sig-
nificant after adjustment for multiple comparisons] and p
= 0.08, respectively). The percentage of C9+ melanized
neurons was not correlated with the number of melanized
neurons per specimen in any of the groups. As with iC3b,
neuronal C9 staining was not correlated with the duration
of PD, and there were no gender differences within groups
for C9 staining.
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Discussion

This study confirmed the presence of both early- and late-
stage complement proteins on Lewy bodies in the PD sub-
stantia nigra, as reported by Yamada et al. [21]. In contrast
to that study, however, complement activation was also
detected on melanized neuron cell bodies and axons.
These differences may be due to technical factors; the
present study used on-slide staining of formalin-fixed sec-
tions and included antigen retrieval pretreatment of sec-
tions with formic acid and citric acid, whereas the earlier
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study used free-floating staining, primarily of paraformal-
dehyde-fixed sections, without antigen retrieval.

The antibody used to detect iC3b in this study is iC3b-spe-
cific and does not recognize the native complement pro-
tein C3 from which iC3b is generated. iC3b staining of
melanized neurons is therefore evidence for early comple-
ment activation, i.e., cleavage of C3, on these cells. iC3b
and its active form, C3b, are opsonins, promoting phago-
cytosis of foreign antigens and cell debris. Deposition of

L

iC3b staining in substantia nigra specimens. Fig. | A: Inmunoreactive Lewy bodies in a PD substantia nigra specimen; Fig.
| B: Staining of melanized neurons (arrows) in a different PD specimen; Fig. | C: Immunoreactive neuron with little melanin
remaining, same PD specimen as Fig. |B; Fig. I D: iC3b staining of melanized neurons (arrows) in a young normal specimen;
compare with unstained neurons in lower part of field; Fig. | E: similar staining pattern in an AD specimen; two prominently
stained melanized neurons are seen (arrows) among several unstained neurons; Fig. |F: iC3b-stained senile plaques in a differ-
ent AD substantia nigra specimen. (Figs. |A and IC, bar = |0 um; Figs. IB and ID-F, bar = 50 um; immunoreactive structures
are dark blue or gray, in contrast to brown melanin and yellow background).
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Figure 2
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C9 staining in substantia nigra specimens. Fig. 2A: Staining of multiple Lewy bodies within a melanized neuron in a PD
specimen; adjacent melanized neuron (arrow) and its axon are also C9-positive; Fig. 2B: immunoreactivity for C9 in a Lewy
body (arrowhead) and in melanin-depleted neurons (arrows) in a different PD specimen; Fig. 2C: staining of melanized neuron
(arrow) and its processes in a DLB specimen; Fig 2D: multiple immunoreactive melanized neurons in an aged normal specimen.
(Fig. 2A, bar = 10 um; Figs. 2B-D, bar = 50 pum; immunoreactive structures are dark blue or gray, in contrast to brown melanin

and yellow background).

iC3b on melanized neurons could facilitate binding of
these cells by activated microglia, known to be present in
increased numbers in the PD substantia nigra [3]. C3a, the
other major C3 cleavage protein, is an anaphylatoxin,
increasing vascular permeability. Though C3a is generally
considered to be pro-inflammatory [27-29] because it
attracts and activates eosinophils, basophils, and mast
cells, few of these cells are present in the brain. C3a may,
in fact, limit brain inflammation, by decreasing the pro-
duction of inflammatory cytokines and inducing the pro-
duction of immunosuppressive ones [30]. It exerts
neuroprotective and (indirectly) neurotrophic effects,
protecting neurons against excitotoxins [31] and inducing
production of microglial neuronal growth factor (NGF)
[32]. iC3b staining of melanized neurons was greater in
YN than in AN specimens, and was positively correlated
with the numbers of melanized neurons in YN specimens
(r=0.63,p =0.016). These results suggest that early com-
plement activation might play a protective role for melan-
ized neurons in the young normal brain; if so, a decrease

in early complement activation on melanized neurons
during normal aging could leave these cells more suscep-
tible to oxidative and/or inflammatory damage. The
decrease in iC3b staining of melanized neurons which
occurred with normal aging was not detected when PD
was present. The significance of this finding is unclear.
The lack of correlation in PD specimens between the
numbers of remaining melanized neurons and the per-
centage of these neurons that were iC3b+ suggests that,
even if early complement activation is primarily neuro-
protective, this process fails to protect melanized neurons
from whatever insults cause them to be lost in the PD
brain.

Goat anti-C9 was used rather than monoclonal anti-C5b-
9 for assessment of late-stage complement activation
because, in preliminary studies, more consistent staining
of senile plaques in AD hippocampus sections was
obtained with the anti-C9 antibody. (AD brain was the
appropriate positive control for these studies because
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Figure 3

Percentages of iC3b-positive melanized neurons in
different groups of substantia nigra specimens. The
percentage of iC3b* melanized neurons was significantly
increased in PD vs. both aged normal and AD specimens, and
in young normal vs. aged normal specimens. Data are
expressed as means + SEM. (2p < 0.05 vs. PD; bp < 0.05 vs.
young normal specimens; abbreviations: AD, Alzheimer's dis-
ease; AN, aged normal; DLB, dementia with Lewy bodies;
PD, Parkinson's disease; YN, young normal)

extensive deposition of C5b-9 has been reported in the
AD brain [33]). Although staining for C9 was also used in
the study by Yamada et al. [21] and has been used by oth-
ers to detect the MAC [34-36], C9 immunoreactivity on
melanized neurons could indicate late-stage complement
activation, upregulation of neuronal C9 synthesis, or
both. C9 staining on melanized neurons tended to
increase in PD vs. AN specimens (60% increase), although
this increase was not statistically significant. Detection of
C9 on degenerating melanized neurons suggests that dep-
osition of the MAC on dopamine neurons may reach lytic
levels in PD and contribute to the loss of these neurons.
The mechanism by which complement is activated on PD
melanized neurons is unknown; one possibility may be
surface immunoglobulin G (IgG), which was recently
reported by Orr et al. [37] to be present on 30% of
dopamine neurons in the PD substantia nigra. Alterna-
tively, complement activation on melanized neurons
could occur secondary to cell injury, triggered by newly
exposed tissue antigens and/or byproducts of damaged
tissue, although this would not explain the apparent acti-
vation of complement on melanized neurons in the YN
substantia nigra specimens.

The increase in iC3b immunoreactivity on melanized
neurons in YN substantia nigra specimens in comparison
with AN specimens was an unexpected finding. A similar
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Figure 4

Numbers of melanized neurons in different groups of
substantia nigra specimens. Total numbers of melanized
neurons were significantly decreased in PD vs. aged normal,
young normal, and AD specimens, and in DLB vs. aged nor-
mal and AD specimens. Data (means £ SEM) are shown for
slides from specimens in which iC3b immunoreactivity was
assessed; essentially similar results were obtained for slides
from specimens in which C9 staining was evaluated. (3p <
0.05 vs. PD; bp < 0.05 vs. DLB; abbreviations: AD, Alzhe-
imer's disease; AN, aged normal; DLB, dementia with Lewy
bodies; PD, Parkinson's disease; YN, young normal)

trend was present for C9, although it was not statistically
significant. The mechanism responsible for complement
activation on normal dopamine neurons, as with injured
dopamine neurons, is unknown. Oxidative stress, which
can activate complement [38], may be involved. The basal
level of oxidative stress in the human substantia nigra is
higher than in other brain regions [39], probably due to
the production of H,0, as a byproduct of dopamine
metabolism [40]. Early complement activation on normal
dopamine neurons could play a protective role, as dis-
cussed earlier, whereas MAC deposition on these neurons,
if it occurs, is likely to be sublytic. There is a substantial lit-
erature on the cellular effects of sublytic levels of the MAC,
including cell cycle activation, cell proliferation, enhance-
ment of cell survival, and cytokine synthesis [41-44], but
its influence on neurons has apparently not been exam-
ined. In addition to the concentrations of complement
proteins deposited on melanized neurons, neuronal
expression of complement inhibitory molecules [45] and
complement receptors [46] in normal and diseased sub-
stantia nigra is also likely to be important in determining
the influence of complement activation on these neurons.
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Figure 5

Percentages of C9-positive melanized neurons in dif-
ferent groups of substantia nigra specimens. C9 stain-
ing was significantly increased in PD vs. AD specimens. The
percentages of C9* melanized neurons in PD and young nor-
mal specimens tended to be increased vs. aged normal speci-
mens, but these differences were not significant (p = 0.04
[not significant after adjustment for multiple comparisons]
and 0.08, respectively). Data are expressed as means + SEM.
(3p < 0.05 vs. PD; abbreviations: AD, Alzheimer's disease;
AN, aged normal; DLB, dementia with Lewy bodies; PD, Par-
kinson's disease; YN, young normal)

Conclusion

This study confirms the occurrence of complement activa-
tion on Lewy bodies in melanized neurons in the PD sub-
stantia nigra, and indicates that this process also occurs on
some non-Lewy body-bearing melanized neurons and on
melanin fragments in this region. Complement activation
on melanized neurons tends to increase in the PD sub-
stantia nigra, but is also present in normal individuals and
in subjects with other neurodegenerative disorders. Com-
plement activation on melanized neurons may decrease
during normal aging. Further studies are indicated to clar-
ify the mechanism (or mechanisms) responsible for com-
plement activation on normal and injured dopamine
neurons, and the significance of this process.
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