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Abstract

Background: Data indicates anti-oxidant, anti-inflammatory and pro-cognitive properties of
noradrenaline and analyses of post-mortem brain of Alzheimer's disease (AD) patients reveal major
neuronal loss in the noradrenergic locus coeruleus (LC), the main source of CNS noradrenaline
(NA). The LC has projections to brain regions vulnerable to amyloid deposition and lack of LC
derived NA could play a role in the progression of neuroinflammation in AD. Previous studies
reveal that intraperitoneal (IP) injection of the noradrenergic neurotoxin N-(2-chloroethyl)-N-
ethyl-2-bromobenzylamine (DSP-4) can modulate neuroinflammation in amyloid over-expressing
mice and in one study, DSP-4 exacerbated existing neurodegeneration.

Methods: TASTPM mice over-express human APP and beta amyloid protein and show age related
cognitive decline and neuroinflammation. In the present studies, 5 month old C57/BL6é and
TASTPM mice were injected once monthly for 6 months with a low dose of DSP-4 (5 mg kg'') or
vehicle. At 8 and | | months of age, mice were tested for cognitive ability and brains were examined
for amyloid load and neuroinflammation.

Results: At 8 months of age there was no difference in LC tyrosine hydroxylase (TH) across all
groups and cortical NA levels of TASTPM/DSP-4, WT/Vehicle and WT/DSP-4 were similar. NA
levels were lowest in TASTPM/Vehicle. Messenger ribonucleic acid (mRNA) for various
inflammatory markers were significantly increased in TASTPM/Vehicle compared with WT/Vehicle
and by 8 months of age DSP-4 treatment modified this by reducing the levels of some of these
markers in TASTPM. TASTPM/Vehicle showed increased astrocytosis and a significantly larger area
of cortical amyloid plaque compared with TASTPM/DSP-4. However, by || months, NA levels
were lowest in TASTPM/DSP-4 and there was a significant reduction in LC TH of TASTPM/DSP-4
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only. Both TASTPM groups had comparable levels of amyloid, microglial activation and astrocytosis
and mRNA for inflammatory markers was similar except for interleukin-1 beta which was increased
by DSP-4. TASTPM mice were cognitively impaired at 8 and || months but DSP-4 did not modify

this.

Conclusion: These data reveal that a low dose of DSP-4 can have varied effects on the modulation
of amyloid plaque deposition and neuroinflammation in TASTPM mice dependent on the duration

of dosing.

Background

Alzheimer's disease (AD) is a chronic debilitating disorder
involving impairments in memory function [1], behav-
ioural disturbances [2], neuroinflammation [3,4], synap-
tic failure [1] and a gradual loss of neurones within the
brain [5]. A recent analysis of post-mortem AD brain
found that neuronal loss was most severe in the locus
coeruleus (LC) rather than in the nucleus basalis, with LC
loss correlating best with the duration of illness [6]. The
noradrenergic (NA) neurones of the LC project widely
throughout the brain, in particular to innervate areas of
the cortex and hippocampus [7]. These brain areas, critical
to attention and memory processes, are also known to
degenerate in AD [5,8]. NA is involved in attention and
memory [9-12] and has antioxidant [13,14] and anti-
inflammatory[15-17] properties in vitro and in vivo.

Acute intraperitoneal (IP) administration of low-doses
(50 ug kg!) of the selective noradrenergic neurotoxin N-
(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4),
in rat, potentiates the expression of pro-inflammatory
genes in response to beta amyloid protein (AB) injection
into the brain [15]. Low-dose DSP-4 administration (50
pg kglor 5 mg kg!) to transgenic human amyloid precur-
sor protein (APP) mice exacerbated microglial activation
and inflammatory gene expression [18], modulated amy-
loid load [19] and influenced cell survival [20]. Higher
doses of DSP-4 (two injections of 50 mg kg! spaced by a
week,) have been assessed in APP23 mice, resulting in an
exacerbation of AD relevant readouts at 6 months post-
injection [21]. These data suggest that NA release in the
projection areas may underlie a protective mechanism, as
well as an involvement in cognitive processes. Drugs that
increase brain NA levels, such as a2 adrenoceptor antago-
nists, provide neuroprotection [22] and improve memory
[23,24]. Compromising the NA system appears to render
brain tissue more susceptible to the pro-inflammatory
effects of AP protein [15,16]. As the LC NA system is com-
promised in AD [6], it is possible that this down-regula-
tion of brain NA can contribute to the progression of
disease.

The present studies examined the consequences of NA
perturbation by repeated IP injection of a relatively low-
dose (5 mg kg!) of DSP-4 to male TASTPM mice. These

mice mimic various hallmarks of AD such as high levels of
circulating AB protein and its deposition in the form of
plaques, cognitive and behavioural deficits [25] and neu-
roinflammation. Unlike recent work [19] in which DSP-4
was injected twice a month, in the present studies DSP-4
was injected once monthly. As depletion of NA may exac-
erbate some of the features of AD, these studies aimed to
modify the readouts of the TASTPM model and impor-
tantly to assess any effects on neurodegeneration, which is
normally absent in this mouse model of AD.

Methods

Animals and treatments

Heterozygote double mutant TASTPM mice were gener-
ated at GlaxoSmithKline as previously described [25].
These animals over express the hAPP695swe mutation
and the pre-senilin-1 M146V mutation resulting in over
production of human APP and beta amyloid protein.
These animals show age related cognitive decline and neu-
roinflammation and have previously been described in
detail [25]. All experimental mice were housed singly with
free access to Global Rodent Maintained Diet (Harlan
Teklad, UK) and water and were maintained in an ambi-
ent temperature of 21 + 1°C, under a controlled light-dark
photoperiod (12:12 h) with lights on at 07:00 h.

At study commencement, male TASTPM mice aged 5
months (in-house supply, n = 48) and age matched C57/
BI6] controls (Harlan, UK, n = 48) were assigned to one of
four groups as follows: C57BL6 treated with vehicle (WT/
VEH), C57BL6 treated with DSP-4 (WT/DSP-4), TASTPM
treated with vehicle (TG/VEH) and TASTPM treated with
DSP-4 (TG/DSP-4). DSP-4 was purchased from Sigma-
Aldrich, UK. At study commencement mice each received
an intraperitoneal (IP) injection of either 5 mg kg of
DSP-4 or 0.9% sodium chloride vehicle in a dose volume
of 1 ml kg!. Thereafter, each mouse was dosed once a
month with their respective treatment. Two weeks follow-
ing their last injection, half of the mice of each treatment
group (at 8 months) and later the remaining half (at 11
months) were assessed in the fear conditioning (FC) par-
adigm (see below for details of assay) and one week later
the mice were culled. At both time points, all brains were
removed and cut in two along the midline. Half of each
brain was post-fixed in 4% paraformaldehyde solution
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whilst the remaining half was microdisected with cortex
and hippocampii removed, frozen on dry ice and stored at
-80°C. All experimental procedures were conducted in
accordance with GlaxoSmithKline local ethics committee
and conform to the UK Animals (Scientific Procedures)
Act 1986.

Ex-vivo neurochemistry-high performance liquid
chromatography (HPLC)

Selected tissue samples underwent standard preparation
and processing through high performance liquid chroma-
tography - electrochemical detection (HPLC-ECD) for
separation analysis against a noradrenaline (NA) stand-
ard.

Tissue preparation

Striatal samples were weighed and homogenised in buffer
which comprised 0.4 M perchloric acid containing
sodium metabisulphate (0.1% wv'!), EDTA (ethylene
diamine tetra acetate 0.01% wv'!) and L-cysteine (0.1%
wv-1) at a ratio of 100 ul homogenising buffer per mg of
striatal tissue (giving a tissue concentration of 0.01 g/ml)
- all constituents of assay buffer were sourced from Sigma,
UK. The samples were then centrifuged on 10,000 x g at
4°C for 10 minutes. Supernatant was subsequently frac-
tion decanted.

HPLC-ECD analysis

Aliquots (30 ul) of supernatant were transferred into
micro-volume glass vials for HPLC-ECD analysis. Mobile
phase consisted of 0.07 M KH,PO,, containing 1.5 mM
sodium octylsulphonate and 0.1 mM EDTA Na,, MeOH,
tetrahydrofuran (87.5:12:0.5%, wv-!). Flow rates for opti-
mal separation and detection varied between 2.2 to 2.5
ml/min. Sample aliquots of 10 pl each were automatically
injected onto the columns. Separation was performed
using two Chromolith Performance columns connected
in series (100 x 4.6 mm i.d., Lutterworth UK). Eluates
were detected using a Decade electrochemical detector fit-
ted with a glassy carbon cell (Antec, Leyden, The Nether-
lands) set at + 0.65 V versus in situ Ag/AgCl reference
electrode. Data were collected using Empower software
(Waters, Milford, MA). The chromatograms were com-
pared with internally run noradrenaline standard calibra-
tions (concentrations between 1 and 100 ng/ml) to
identify and quantify components. Results were expressed
in ng mg! of wet-weight tissue and presented as mean +
sem. Effects were analysed by Fischer LSD test.

Fear conditioning

Contextual fear-conditioning is a form of associative
learning, in which animals learn to recognise a training
environment (conditioned stimulus) previously paired
with an aversive stimulus (foot-shock, unconditioned
stimulus). Mice were subjected to the contextual fear con-
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ditioning paradigm using a computer controlled fear con-
ditioning system (TSE, Bad Homburg, Germany). On day
1 (training day), mice were placed individually in a grey
Perspex shock chamber (25 x 28 x 16.5 cm; Width x
Depth x Height) with a metal grid floor, housed within a
sound attenuating box. For the conditioning trial, after
180 s habituation to the chamber, the mice received an
auditory tone cue for 30 s followed by an electric foot-
shock (0.7 mA constant current for 2 s) delivered via the
grid floor of the chamber and this tone-shock pairing was
repeated after 30 s. Contextual memory was tested 24 h
after the conditioning trial. On day 2, the mice were
placed in the familiar chamber without tone stimulation
or foot-shock and the amount of inactivity was measured
in a 180 s trial period. The mice were returned to their
home cage whilst a novel chamber with clear Perspex
walls, a triangular floor area (using a diagonal box
divider) and a grid floor covered with a thick paper mat
was prepared. The mice were then placed in the modified
chamber and the amount of inactivity in a 180 s trial
period was recorded in this novel context. The test
sequence of mice was randomised across genotype, drug
treatment and chamber and individual chambers were
swabbed with 70% alcohol between each trial. Locomotor
activity and movement at the same location (e.g. rearing)
were monitored by infra-red motility sensors in the cham-
ber walls. Inactivity was defined as movement < 1 cm/s.
The percentage duration of inactivity was calculated by
the fear conditioning system. On day 2, contextual mem-
ory, defined as the amount of inactivity displayed in the
familiar context (in which the foot-shocks were received)
minus the amount of inactivity displayed in the novel
context was measured.

Immunohistochemistry

Hemisected brains were immersed fixed in 4% parafor-
maldehyde (VWR, UK) for 3 days at room temperature
and prepared for paraffin wax processing using a Shandon
Citadel 1000 tissue processor and embedded in paraffin
wax using a Shandon Histocentre II embedding centre
(Thermo Shandon, UK). Using a Microm HM 355 S rotary
microtome (Microm, UK), at least 40 semi-serial sections
of 5 uM thickness were prepared from each sample to
include the LC and dried at room temperature for at least
24 hours prior to staining. Sections were taken from the
same region throughout the LC and 2 sections each were
assigned for immunohistochemical staining for tyrosine
hydroxylase (TH), glial fibrillary acid protein (GFAP),
microglia (CD68) and amyloid immunohistochemistry.
Sections were dewaxed in Histoclear (National Diagnos-
tics, UK) and hydrated through industrial methylated
spirit (IMS) (VWR, UK), 70% IMS and deionised water.
Sections assigned for TH were microwaved (Sanyo Show-
erwave, 1000 W) in tris-borate-EDTA buffer, pH 8.3
(Sigma-Aldrich, UK) for 2.5 minutes at 1000 W then for a
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further 10 minutes at 450 W then allowed to cool for 20
minutes. Sections were washed in deionised water and a
hydrophobic barrier applied above and below the section
using a PAP pen (DakoCytomation, UK). Slides were
loaded into an automated immunostaining machine
(DakoCytomation, UK) and Optimax buffer (A.
Menarini, UK) was applied to each section. Sections
received peroxidase block (DakoCytomation, UK) for 5
minutes, primary antibody rabbit anti TH, affinity puri-
fied (Chemicon International, UK) diluted 1 in 500 in
antibody diluent (DakoCytomation, UK) for 30 minutes,
biotinylated goat anti rabbit (Vector Laboratories, UK)
diluted 1 in 200 in Optimax buffer for 30 minutes, perox-
idase ABC kit (Vector Laboratories, UK) for 45 minutes
and diaminobenzidine substrate kit (DakoCytomation,
UK) for 10 minutes with Optimax buffer wash between
each step and deionised water after the diaminobenzidine
step. Slides were taken out of the machine and washed in
running tap water for 5 minutes prior to staining in Gills
haematoxylin (HD Supplies, UK) for 3 seconds. Sections
were washed in running tap water to "blue", dehydrated
in graded followed by absolute IMS, cleared in Histoclear
and mounted in DPX (VWR, UK). For CD68 (for activated
microglia) and glial fibrillary acidic protein (GFAP) for
reactive astrocytes, sections were dewaxed and hydrated as
before and treated with proteinase K (DakoCytomation,
UK) for 5 minutes followed by deionised water wash prior
to loading onto the immunostaining machine. Endog-
enous peroxidase activity was blocked with peroxidase for
5 minutes and either rat anti mouse CD68 (Serotec, UK)
dilution 1 in 50 in antibody diluent for 30 minutes or rab-
bit anti bovine GFAP 1 in 500 in antibody diluent was
applied for 30 minutes. For CD68 the secondary antibody
was biontinylated anti rat (Serotec, UK) dilution 1/100,
for GFAP biotinylated anti rabbit dilution 1 in 200 in
Optimax buffer for 30 minutes at room temperature. Sec-
tions were treated with peroxidase ABC for 45 minutes at
room temperature and DAB substrate for 10 minutes. For
amyloid immunohistochemistry we used in house mono-
clonal antibody 1ES8, raised against the 13-27 fragment of
AP. Sections were dewaxed and hydrated as before then
treated with 85% formic acid (VWR, UK) for 8 minutes
then washed thoroughly in deionised water before apply-
ing the hydrophobic barrier and loading onto the immu-
nostaining machine. The machine was programmed to
deliver the ready to use peroxidase block (DakoCytoma-
tion, UK) for 5 minutes, primary mouse monoclonal anti-
body 1E8 diluted 1 in 1000 in antibody diluent
(DakoCytomation, UK) for 30 minutes, prediluted
labelled streptavidin biotin system (LSAB) 1 (DakoCyto-
mation, UK) for 10 minutes, prediluted LSAB 2 for 10
minutes and diaminobenzidine substrate kit (DakoCyto-
mation, UK) for 10 minutes with Optimax buffer wash
between each step and deionised water after the diami-
nobenzidine step. Slides were taken out of the machine
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and washed in running tap water for 5 minutes prior to
staining in Gills haematoxylin (HD Supplies, UK) for 3
seconds. Sections were washed in running tap water to
"blue", dehydrated in graded then absolute IMS, cleared
in Histoclear and mounted in DPX (VWR, UK).

For TH counting, the cell bodies in the LC were viewed
under a x10 objective on an Olympus BX41 microscope.
Photomicrographs of 1E8 stained sections, for amyloid,
were taken using a Colourview digital camera and Ananl-
ySIS image analysis software (Soft Imaging Systems) and
x4 objective, a percentage area measurement was calcu-
lated using Leica Q-Win system. GFAP and CD68 sections
were assessed but not quantified.

TaqMan analyses

Total RNA was isolated from cortex tissues from WT and
TASTPM mice using Trizol reagent according to the man-
ufacturer's instructions. The RNA was resuspended in
ultraPURE distilled water (Invitrogen, life technologies,
UK), and RNA purity was confirmed by ensuring that
A260:A280 nm ratio was >1.8. Equal quantities of RNA
from each tissue sample were used in reverse transcription
reactions to generate cDNAs. First strand cDNA syntheses

Table I: TagMan reagent sequences

Gene Reagent Sequences

MIP-la F; AGCTGACACCCCGACTGC

R; GTCAACGATGAATTGGCGTG

P; TGCTGCTTCTCCTACAGCCGGAAGAT
F; AGCTCTGCGTGTCTGCCC T

R; GCTGAGAACCCTAGAGCACA

P; TCTCCT CTTGCTCGTGGCTGCCTT

F; TCCAGGCGGTGCCTATGT

R; GAGCGTGGTGGCCCC

P; TCAGCCTCTTCTCATTCCTGCTTGTGG
F; TGATGTCCGAAGCAAACATCA

R; TGTGGCTCCCATGTTGCAT

P; TTCAGATCCCGAAACGCTTCACTTCC
F; TTGGGCCTCAAAGGAAAGAAT

R; TCTCCAGCTGCAGGGTGG

P; TATACCTGTCCTGTGTAATGAAAGACGGCA CA
F; CGGAGGACGGAGGACTCGTT

R; ACTTCCATGGTCAGCGGCT

P; TGCACTTGGCAATCATCCACGAAGA
F; TACCACCGCCATCACAACC

R, TTTGTGTTGTGGTCCTTCTTCTTTAG
P; CTCCCACTGCCGCCACTGACC

F; GGAGCTCAATGACCGCTTTG

R; AGCGCCTTGTTTTGCTGCTC

P; CAGCTACATCGAGAAGGTTCG

F; TCTTGCAGTCGTGTTTGTCAC

R; TCTTGAACCCACTTCTTCTCT

P; AGGAACCGCCAAGTGTGTGC

F; GGAATGACACACTGCTGCCTAA

R; GAACACTGAGAGATAACTCCGGAAC
P; CCCTGTCATCTATGCCTTTGTTGGAGAGA

MIP-1p

TNFa

iNOS

IL-1B

IkBa

FasL

GFAP

RANTES

CCR5
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Noradrenaline levels in hippocampus and cortex. For all graphs WT/VEH (white), WT/DSP-4 (grey), TG/VEH (stripes),
TG/DSP-4 (black). NA levels in hippocampus (A) and cortex (B) in WT and TG mice (8 months). Hippocampal NA levels are
significantly lower in WT/VEH (p < 0.05) and TG/DSP-4 (p < 0.05) mice relative to WT/DSP-4 mice. In cortex TG/VEH mice
show a trend towards lower NA levels compared with WT/VEH (p = 0.08) and WT/DSP-4 (p = 0.09). TG/DSP-4 NA levels are
no different to WT/VEH or WT/DSP-4. (Mean + S.E.M. ng/ml; WT/VEH 293 + 49; TG/VEH 194 £ 14; WT/DSP-4 289 * 30;
TG/DSP-4 262 £ 41). At | | months, NA levels are significantly reduced in both hippocampus (p < 0.05) (C) and cortex (p <
0.05) (D) in TG mice (hippocampus: mean * S.E.M. ng/ml, WT/VEH 172 + 16; TG/VEH 113 £ |5; cortex: WT/VEH 224 + 28;
TG/VEH 147 £ 12). TG/DSP-4 mice have lower levels of cortical (p < 0.0001) and hippocampal (p < 0.0001) NA compared
with WT/DSP-4 (cortex: mean + S.E.M. ng/ml, WT/DSP-4 229 + |19; TG/DSP-4 63 + 5; hippocampus: WT/DSP-4 182 + 23; TG/
DSP-4 62 £ 14). TG/DSP-4 mice have lower levels of cortical (p < 0.01) and hippocampal (p < 0.05) NA compared with TG/

VEH.

and aliquoting of resulting cDNA products for subsequent
parallel Tagman PCR reactions were all performed as
described in detail previously [26]. Additional reactions
were performed using genomic DNA to produce a stand-
ard curve relating threshold cycle to template copy
number. Primer (F and R) and probe (P) sets were
designed from mouse or rat sequences in the Genbank
database using Primer Express software (Perkin-Elmer,
UK); see Table 1 for sequences. All Tagman probes con-
tained 6-Carboxyfluorescein at 5' end and the quencher
dye, 6-carboxy-tetramethyl-rhodamine at the 3' end.

Results

HPLC analyses

At 8 months of age (figure 1a) the level of NA in hippoc-
ampus or cortex of WT mice was not altered by DSP-4
treatment compared with vehicle treatment. There was a
trend towards a reduction in cortical NA levels in TG/VEH
mice compared with WI/VEH mice at 8 months of age (p
= 0.08), indicating a reduced (33%) basal cortical NA
level in TASTPM mice compared with WT mice. Levels of
NA in TG/DSP-4 mice were no different to the levels seen
in WI/VEH (p = 0.6) or WI/DSP-4 (p = 0.6).
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Contextual discrimination in the fear conditioning paradigm. Contextual discrimination in the fear conditioning para-
digm in WT and TG mice at 8 months (A) and | | months (B). Compared with respective WT mice, TG mice show impairment
in contextual discrimination, a measure of the percent inactivity during 180 seconds during when mice are placed back in the

original environment where foot-shock was first administered. DSP-4 treatment did not modify the level of impairment seen in

TG mice. *p < 0.05 vs. respective WT group.

By 11 months of age (figure 1b), DSP-4 treatment did not
alter the levels of NA in hippocampus or cortex of WT
mice when compared with WT/VEH. Basal levels of NA in
hippocampus (34% reduction, p < 0.05) and cortex (34%
reduction, p < 0.05) were significantly lower in the TG/
VEH mice compared with WT/VEH and significantly
lower in hippocampus (65% reduction) and cortex (72%
reduction) of TG/DSP-4 mice compared with WI/DSP-4
(p < 0.0001, for both brain areas). DSP-4 treatment of
TASTPM mice, however, did significantly further reduce
hippocampal (45% reduction, p = 0.049) and cortical
(57% reduction, p = 0.005) NA levels compared with TG/
VEH. This effect of DSP-4 to reduce NA, apparent only in
the TASTPM mice, suggests a raised susceptibility to the
deleterious effects of this toxin in the TASTPM mice at the
dose concentration and dosing regime that was used in
the present study. However, this effect to reduce NA levels
in TASTPM was only observed at the 11 month time point,
the time point when a significant reduction in the level of
TH staining in the LC of TG/DSP-4 mice is observed (see
below).

Fear conditioning

Contextual fear association

Irrespective of treatment, WT mice exhibited robust and
similar contextual memory at both time-points investi-
gated whilst TG mice exhibited a similar and significant
impairment of contextual memory compared with the WT
group. Following either 3 or 6 month treatment, DSP-4
had no effect on contextual memory in either genetic
group; both WT and TG groups treated with DSP-4 dis-

played similar contextual memory to that in the appropri-
ate vehicle-treated group (figure 2).

Immunohistochemistry

Brains were processed for a number of markers including
diffuse amyloid plaques, activated microglia, reactive
astrocytes and tyrosine hydroxylase (TH). At 8 months of
age, there was a significant reduction in the area of cortex
stained positive for diffuse amyloid plaques in TG/DSP-4
mice compared with TG/VEH (figure 3B, figure 4). There
was a non-significant difference in the area of diffuse amy-
loid plaque in hippocampus of TG/DSP-4 mice compared
with TG/VEH at this time point (figure 3A, figure 4).
Although there was no difference in the area of microglial
stain in cortex between the two TASTPM groups at 8
months, the cortical GFAP stain for reactive astrocytes was
patchy and less dense in the TG/DSP-4 mice compared
with TG/VEH (figure 5). This was supported at the tran-
scriptional level by a reduction in GFAP mRNA measured
in the cortex of TG/DSP-4 compared with TG/VEH at 8
months. By 11 months of age both TG/DSP-4 mice and
TG/VEH mice had comparable levels of diffuse amyloid
plaque, microglial (data not shown) and astrocytic stain-
ing in the areas examined (figures 3C, 3D, 6 and 7).
Although there was no difference in the levels of LC TH
expression across all groups at 8 months (figure 8A), his-
tological examination of the LC at 11 months revealed a
significant reduction in TH levels in the LC of TG/DSP-4
mice compared with TG/VEH (figure 8B). Levels of TH in
LC of TG/VEH mice were no different to WT mice of either
treatment.
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There is a reduction in cortical amyloid in TG/DSP-4 vs. TG/VEH at 8 months, **p < 0.01.

TaqMan analyses

Hemisected cortex was analysed by TagMan PCR for vari-
ous mRNA's that encode mediators involved in inflamma-
tion. Macrophage inflammatory protein-lalpha (MIP-
la), macrophage inflammatory protein-1beta (MIP-1p),
tumour necrosis factor-alpha (TNF-a), GFAP and 'Regu-
lated upon Activation, Normal T cell Expressed and
Secreted' chemokine (RANTES) mRNA levels were signifi-
cantly increased in TG/VEH compared with WT/VEH
group at 8 months (figure 9). However, there was a trend
towards a reduction in the levels of some of these mRNA
in the TG/DSP-4 mice compared with TG/VEH mice. In
the case of MIP-1a, TG/DSP-4 mice showed a statistically
significant reduction in MIP-1a. mRNA compared with
TG/VEH. Although levels were reduced, the level of MIP-
1B mRNA in TG/DSP-4 was not statistically different to
levels in TG/VEH (p = 0.12). There was also a trend
towards a reduction in TNF-a (p = 0.06) and GFAP (p =
0.15) mRNA levels in TG/DSP-4 compared with TG/VEH.
In WT mice, DSP-4 treatment increased RANTES and
inducible nitric oxide synthase (iNOS) mRNA levels com-

pared with vehicle treatment but DSP-4 treatment did not
further alter the levels of these mRNA in TG mice.

By 11 months of age, DSP-4 treatment of WT mice did not
cause an increase in interleukin-1 beta (IL-1f) levels com-
pared with vehicle treated WT mice. However, IL-18 levels
were increased in TG/DSP-4 mice compared with TG/VEH
(p = 0.05) (figure 10). This indicates that the DSP-4 exac-
erbated the inflammatory profile for IL-18 only in the
TASTPM mice. DSP-4 lowered mRNA levels for the
nuclear factor kappa B (NF«kB) inhibitory subunit, IkBa,
in WT mice. In vehicle and DSP-4 treated TASTPM mice,
IxBa mRNA levels were significantly lower than those lev-
els measured in WT/VEH mice. TG/DSP-4 mice displayed
the lowest levels of IkBoo mRNA and this level was signifi-
cantly different to TG/VEH levels. A reduction in IkBa
leads to increased NFxB expression. NF«kB regulates the
expression of inflammatory cytokines, chemokines,
immunoreceptors and cell adhesion molecules and as
such is a key mediator of the immune response. MIP-1q,
MIP-1B, TNF-a. and GFAP levels were all significantly
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WT /DSP4

TG /DSP4

Figure 4

Amyloid histology — representative sections (8 months). Sagittal sections across cortex and hippocampus for amyloid
staining (8 months) in WT and TG mice. Note the marked reduction in cortical amyloid staining in TG/DSP-4 group compared

with TG/VEH. Scale bar represents | mm.

increased in TASTPM mice compared with WT at 11
months (figure 10). The pro-apoptotic Fas ligand (FasL),
RANTES and chemokine co-receptor-5 (CCR5 - which
binds MIP-1a, MIP-1f and RANTES) mRNA were also sig-
nificantly elevated in TASTPM compared with WT (figure
10) and DSP-4 treatment did not modify the levels of
these markers in TASTPM mice at this 11 month time
point.

Discussion

These studies highlight the importance of the NA system
in the modulation of readouts relevant to AD in the
TASTPM mouse. The readouts we examined included NA
levels and LC TH, AP protein deposition, neuroinflamma-
tion and behaviour following monthly intraperitoneal
DSP-4 administration for either 3 or 6 months duration.
In general, previous studies have employed doses of DSP-

4 which are ten-fold the dose used in the present studies,
which may explain why such studies show a loss in TH in
LC in both TG and WT mice [21]. Our studies used the
more subtle dose of 5 mg kg! with which we did not see
overt changes in LC TH immunoreactivity or changes in
brain NA levels in WT mice. However, we did see a signif-
icant reduction in LC TH immunoreactivity and large
reductions in NA in the brain of TASTPM mice which had
been treated with DSP-4. We can observe from the HPLC
analyses that there is a non-significant trend for a decline
in brain NA levels of TG/VEH compared with WT/VEH
mice at 8 months and a significant reduction by 11
months. Hence, there is a natural decline in brain NA lev-
els in TG/VEH controls, suggesting that the NA system is
already perturbed in TASTPM mice and could explain why
they are more reactive to the effects of the low dose of
DSP-4. At the 8 month time point, there is a tendency for
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Figure 5
Astrocytic staining (8 months). Astrocytic staining (8 months) in WT and TG mice. At 8 months staining is more patchy
and less uniform in the TG/DSP-4 compared with TG/VEH group. Scale bar represents 200 um.

increased cortical NA in TG/DSP-4 relative to the TG/VEH
group that is not evident in the hippocampus. Based on
the data generated, it is difficult to explain why these dif-
ferent brain areas show differing sensitivity to DSP-4. A
time-course study is required in order to track the changes
in NA levels throughout the 6 months of DSP-4 treatment.
Our sample represents a snap-shot and as such does not
provide information on the fluctuations in brain NA
occurring over time following DSP-4 treatment. The
decrease in LC TH immunoreactivity seen in TG/DSP-4
mice is small in contrast to other literature [21], but this
can be explained by the lower dose of DSP-4 and differing
protocol of administration employed in the present stud-
ies. In addition, the LC TH decrease seen in the present
studies is small when compared with the LC cell loss that
can be seen in AD [6]. The lack of changes in brain NA and
in LC TH immunoreactivity in WT mice suggests that the

low dose of DSP-4 used is not sufficient to affect mice in
which the NA system is not already perturbed.

Previous data reports that modulation of the LC NA sys-
tem impacts on the regulation of inflammatory mediators
in vitro and in vivo. In vitro studies have shown an inhi-
bition of microglial inflammatory responses (nitric oxide
and interleukin-1f production) by NA [27]. Anti-inflam-
matory actions of a2 adrenoceptor antagonists, which act
to increase extracellular NA by inhibiting the pre-synaptic
inhibition by NA on its own release, have also been
reported in vivo [28]. Conversely, it has been reported
that NA depletion in vivo, by injection of DSP-4, leads to
an exacerbation of neuroinflammation in response to cen-
tral injection of AP protein [15,19]. The anti-inflamma-
tory action of NA is mediated through the modulation of
chemokine [29] and cytokine [30] release from macro-
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Figure 6

Amyloid histology — representative sections (I | months). Sagittal sections across cortex and hippocampus for amyloid
staining (1 | months) in WT and TG mice. At | | months staining is of a similar level in TG/DSP-4 and TG/VEH groups. Scale bar

represents | mm.

phages and microglia. In vitro studies of microglia have
shown that NA, a1l agonists, f1 and B2 agonists can each
suppress the expression of mRNAs encoding the pro-
inflammatory cytokines, IL-6 and TNF-a [30]. NA has also
been shown to suppress the microglial release of nitric
oxide (NO) [30,31]. Recently, NA was reported to reduce
the microglial induced cell death of cortical neurones, an
effect shown to be mediated via reduction of IL-B release
from microglia [32].

In the current studies, histological analyses revealed a
patchy GFAP positive astrocytic stain in cortex of TG/DSP-
4 group compared with a more diffuse pattern seen in TG/
VEH. This histological readout of a reduced inflammatory
reaction was backed up by TagMan PCR analyses of
mRNA. As well as a decrease of GFAP protein by histology

at 8 months there was also a reduction in GFAP mRNA
and a reduction in mRNA for other proteins involved in
inflammation including MIP-1a, MIP-1§ and TNF-o.
Interestingly, despite a non-significant difference in NA
levels between vehicle and DSP-4 treated WT groups, DSP-
4 treatment significantly increased iNOS, TNF-a and
RANTES mRNA expression in WT mice at the 8 month
time point, an effect which was not observed in TASTPM
mice. Based on the current data we cannot confirm the
reason for this discrepancy and further studies to fully
assess the effects of DSP-4 on brain mRNA expression and
how this relates to NA levels should be performed. Our
current data only provides information on NA levels at the
time of sampling. Further investigations will require a
more in-depth analysis involving multiple measurements
taken following DSP-4 treatment.
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'

Figure 7

Astrocytic staining (1 | months). Astrocytic staining (1 | months) in WT and TG mice. At | | months the staining pattern is
similar in TG/DSP-4 and TG/VEH groups. Scale bar represents 200 um.

The present data report that once monthly injection of 5
mg kg! DSP-4 to TASTPM mice is anti-inflammatory and
slows down amyloid plaque accumulation, as seen from 5
through to 8 months of age. However, by 11 months of
age, the profile is similar across both DSP-4 treated
TASTPM groups. In order to interpret these data, in partic-
ular the observed beneficial effects of DSP-4 in TASTPM
mice, it is necessary to consider the actions of DSP-4 in
vivo. Although high doses (50 mg kg!) of DSP-4 have
been shown to dramatically reduce tissue NA levels and
ultimately lead to a cell loss in the LC of normal mice, the
effects of lower doses on brain NA levels have not been
reported in detail. Interestingly, it has been reported by
microdialysis that 50 mg kg! of DSP-4 acutely increases
the extracellular concentration of NA in the frontal cortex
in normal rats [33,34]. In our current studies, in the short

term (3 months of once monthly dosing from 5-8
months of age), the 5 mg kg! dose of DSP-4 did not
decrease tissue NA levels in TASTPM mice when compared
with vehicle treated TASTPM mice. We show that our low
dose of DSP-4 acutely prevented a natural decline in extra-
cellular NA in cortex in the short term, as was seen in TG/
VEH mice. At this 8 month time point there was no
change in LC TH cell count, indicating an intact NA sys-
tem. TG/VEH mice, however, did show a trend towards
reduced cortical NA which was associated with an
increased inflammatory profile and increased amyloid
load compared with TG/DSP-4. This suggests that the
trend of increased NA in the TG/DSP-4 group may have
slowed inflammatory processes and the amyloid accumu-
lation that is usually present by this time point, as evi-
denced by the TG/VEH readout.

Page 11 of 16

(page number not for citation purposes)



Journal of Neuroinflammation 2007, 4:8

1001 TH — 8 month
90
80 4
70 |
60 4
50 4
40 -
30 A
20 4

T
L

Average Count

Figure 8

http://www.jneuroinflammation.com/content/4/1/8

100 1 TH — 11 month '
S EI
70 |
60 -
50 |
40 |
30 |
20 |

Average Count

Tyrosine hydroxylase histology in locus coeruleus. LC TH positive cell counts at 8 months (A) and | | months (B) in WT
and TG mice. There is a significant reduction in cells staining positive for TH in TG/DSP-4 vs TG/VEH at || months. *p < 0.05.

Kalinin et al recently demonstrated that depletion of NA
in the brains of VZ717F APP over expressing mice treated
with DSP-4 corresponded with an increase in the number
of amyloid plaques [19]. In the current study, decreased
cortical NA levels in TG/VEH relative to TG/DSP-4 mice
related to increased amyloid in the cortex of TG/VEH mice
at the 8 month time point. TG/VEH and TG/DSP-4 mice
showed similar hippocampal NA levels at the 8 month
time point which may explain why no difference in hip-
pocampal amyloid load was observed between the
groups. By 11 months, despite a large reduction in cortical
and hippocampal NA levels and a small but significant
decrease in LC TH staining in TG/DSP-4 mice, amyloid
plaque levels were similar to the TG/VEH group. Extend-
ing such a study beyond an 11 month time point may
reveal if DSP-4 causes greater amyloid plaque load relative
to vehicle treated TASTPM mice. Our data and previously
reported literature illustrate that NA can modulate amy-
loid plaque deposition; however, reported data is contra-
dictory as to the actions of noradrenergic agonism on
amyloid plaque load. Kalinin et al (2006) reported that
NA can increase the microglial phagocytosis of amyloid
plaques in vitro whilst, in vivo, DSP-4 treatment
decreased the expression of the amyloid degrading
enzyme neprilysin [19]. In contrast, the administration of
a beta2-adrenergic agonist, which would mimic the effects
of NA, resulted in the augmentation of cerebral amyloid
plaque deposition in APP/PS1 over expressing mice [35].
Hence, how and in what way NA impacts on the regula-
tion of amyloid plaques in vivo remains an issue of
debate.

Various brain areas, including the hippocampus, cortex
and amygdala, are thought to be involved in the FC
response [37]. The hippocampus and cortex are inner-
vated by the LC NA system [36] and NA can modulate
beta amyloid load. Hence, we reasoned that noradrener-
gic depletion of these areas via the administration of DSP-
4 may influence performance in FC. DSP-4 treated
TASTPM mice, although showing a reduced plaque load
in cortex, displayed a similar level of FC impairment rela-
tive to vehicle treated TASTPM at 8 months of age. Hip-
pocampal amyloid load was not affected by DSP-4 and
hence we cannot discount that FC performance may have
improved if DSP-4 had also reduced plaque load in this
area. At 11 months of age the impairment in FC was again
of an equal magnitude in both TASTPM groups and the
deficit in TG mice was not exacerbated by DSP-4,
although by this stage amyloid levels were indistinguisha-
ble between groups. By 11 months there was also no fur-
ther worsening of the FC impairment compared with 8
months in the TG/VEH group or the WT/VEH group.
Hence, either the mice were maximally impaired in the FC
assay by 8 months or the cause of the FC deficit is amyloid
independent. Further characterisation of the onset of the
FC deficit with relation to brain amyloid and the tracking
of any further decline in FC will be important in address-
ing this issue. The relative contributions of the hippocam-
pus, amygdala and cortex to contextual learning remain
debated. In the current studies, we cannot account for any
impact the LC NA system may have had on the amygdala
as this area was not examined for amyloid load or NA lev-
els.
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mRNA levels in cortex, 8 months. mRNA levels in WT and TG mice (8 months). mRNA levels are raised in TG/VEH vs.
WT/VEH for MIPI-a (A), MIP1-B (B), TNF-a. (C), GFAP (D) RANTES (E). There is a significant reduction in MIP1-ao mRNA
levels in TG/DSP-4 vs. TG/VEH. DSP-4 increased iNOS (F) in WT mice only and iNOS was not raised in TG/VEH or TG/DSP-

4 vs. WT/VEH.

The various studies to date which report DSP-4 adminis-
tration to APP or APP/PS1 mice all differ with respect to a
number of parameters which include the DSP-4 dose
used, dosing regime (single vs. repeated injections), trans-
genic model used and the age of the mice at the initiation

and end of dosing. This makes direct comparison across
studies difficult. It is possible that in our studies, at even
later time-points or with twice monthly as opposed to
once monthly DSP-4 injection, the inflammatory profile
and amyloid plaque load in TG/DSP-4 mice would be
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greater than that seen in TG/VEH mice. The recent data
[19] certainly provide strong evidence that twice-monthly
dosing of 5 mg kg1 DSP-4 to mutant V717F human amy-
loid precursor protein (APP) mice over a 6-month period
caused a marked increase in inflammation and amyloid
plaque load in brain when measured after 6 months. It is
of importance to observe earlier readouts in the mutant
V717F APP mouse using the twice monthly DSP-4 para-
digm reported by Kalinin et al [19] to see if these mice also
show an earlier effect on inflammation and amyloid sim-
ilar to that seen in our studies.

Conclusion

In conclusion, our data add novel information with
respect to the effects of DSP-4 on NA perturbation, amy-
loid load, neuroinflammation and LC cell survival in a
transgenic mouse model bearing APP and PS1 mutant
transgenes. Future work will address the effects of the
boosting of central NA in TASTPM mice, for example with
a2 adrenoceptor antagonists, to assess the impact this
may have on amyloid plaques, neuroinflammation and
behaviour. It is envisaged that such an approach will be
beneficial for the treatment of AD.
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