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Abstract
Background: There is a growing body of evidence that unilateral nerve injury induces bilateral response, the 
mechanism of which is not exactly known. Because cytokines act as crucial signaling molecules for response of 
peripheral nerves to injury, they may be induced to mediate the reaction in remote structures.

Methods: We studied levels of tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10) proteins using ELISA in the 
ipsilateral and contralateral lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) from naïve rats, rats operated 
on to create unilateral chronic constriction injury (CCI) of the sciatic nerve, and sham-operated rats. Withdrawal 
thresholds for mechanical allodynia and thermal hyperalgesia were measured in the ipsilateral and contralateral hind 
and forepaws.

Results: The ipsilateral hind paws of all rats operated upon for CCI displayed decreased withdrawal thresholds for 
mechanical allodynia and thermal hyperalgesia, while no significant behavioral changes were found in the 
contralateral hind paws and both forepaws. Significantly lower baseline levels of TNF-α and IL-10 protein were 
measured by ELISA in the lumbar than cervical DRG of naïve rats. Bilateral elevation of TNF-α was induced in both the 
lumbar and cervical DRG by unilateral CCI of the sciatic nerve for 7 and 14 days, while the level of IL-10 protein was 
increased bilaterally in the lumbar DRG 1 and 3 days after operation. IL-10 levels declined bilaterally even below 
baseline level in both cervical and lumbar DRG 7 days from CCI and normalized after 14 days. In contrast to no 
significant changes in TNF-α, level of IL-10 protein was significantly increased in the ipsilateral lumbar DRG after 3 days 
and bilaterally in the lumbar DRG after 14 days from sham operation.

Conclusions: The results of our experiments show a bilateral elevation of TNF-α and IL-10 not only in the 
homonymous DRG but also in the heteronymous DRG unassociated with the injured nerve. This suggests that 
bilaterally increased levels of TNF-α and IL-10 in DRG following unilateral CCI are linked with general 
neuroinflammatory reaction of the nervous system to injury rather than only to development and maintenance of 
neuropathic pain.

Background
Peripheral neuropathic pain, manifested by spontaneous
pain, hyperalgesia and allodynia, arises as a result of vari-
ous types of nerve damage, e.g., diabetic neuropathy, HIV
neuropathy, post-herpetic neuralgia, drug-induced neu-

ropathy and traumatic nerve injury [1,2]. The dorsal root
ganglia (DRG) containing the primary sensory neurons
play a key role in neuropathic hypersensibility [1,3-5].

Although neuropathic pain usually arises from the area
innervated by the damaged nerve, there has been increas-
ing evidence that a peripheral nerve lesion also affects the
contralateral non-lesioned side [6]. The majority of stud-
ies dealing with peripheral nerve injury observe the con-
tralateral changes at homonymous nerves, but only
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occasional studies have aimed at reaction of the unaf-
fected heteronymous nerves [7].

Cytokines play a crucial role in the nervous system's
reaction to injury. These are signaling proteins that serve
as intercellular messengers in immune reaction to injury
of the nervous system [8,9]. Experimental studies have
provided unequivocal evidence in recent years that the
proinflammatory cytokines can induce or facilitate neu-
ropathic pain [10-12]. On the other hand, blockade of
proinflammatory cytokines and/or administration of
anti-inflammatory cytokines have reduced neuropathic
hyperalgesia in animal models [13-16].

Tumor necrosis factor α (TNF-α) is a pleiotropic proin-
flammatory cytokine that participates in modulation of
early degenerative changes during a peripheral nerve
injury [17,18]. TNF-α molecules are produced by
Schwann and blood derived cells during Wallerian degen-
eration [19,20] and contribute to both inflammatory [21]
and neuropathic hyperalgesia [22]. Following CCI, the
level of TNF-α protein is elevated in the distal stump of
injured nerve [17] and in the DRG, where increased
immunoreactivity has been detected in the satellite glial
cells (SGC) and neuronal bodies [23-25].

Interleukin 10 (IL-10) is one of the most important reg-
ulators of the immune system. Although IL-10 is known
to have many different roles in immune reaction, it is a
powerful member of the anti-inflammatory cytokine
family, which can suppress many proinflammatory cytok-
ines (e.g., IL-1, TNF-α and IL-6) implicated in neuro-
pathic pain [26-28]. In addition, IL-10 interrupts
proinflammatory cytokine signaling by downregulation
of proinflammatory cytokine receptor expression [29].
Studies in animal models have shown that IL-10 prevents
or reverses many pathological pain states, including pain
induced by chronic constriction injury neuropathies
[13,30]. The very short biological half-life of the IL-10
protein precludes its direct use for treating neuropathic
pain, but it can be delivered using gene therapy tech-
niques and/or in protein compositions with protracted
action [31].

Most published studies dealing with the nervous sys-
tem's reaction to injury are aimed at proinflammatory
cytokines. Interest in anti-inflammatory cytokines during
pathogenesis of neuropathic pain has increase in recent
years. However, data about transitional changes of anti-
inflammatory cytokines in DRG following peripheral
nerve injury are rare. Therefore, the goal of the present
study was to investigate, by means of ELISA analysis,
changes of the TNF-α protein as a member of the proin-
flammatory cytokines and the level of anti-inflammatory
IL-10 protein in the ipsilateral and contralateral L4-L5 as
well as C7-C8 DRG after both unilateral CCI of the rat
sciatic nerve and sham operation.

Methods
Animals and surgical procedures
The experiments were carried out on female Wistar rats
(n = 42) weighing 240-250 g at the time of surgery. The
rats were divided into three principal groups: a group of
animals with unilateral chronic constriction injury (CCI)
of the sciatic nerve (n = 24), sham-operated animals (n =
12) and a control group of naïve rats (n = 6).

All surgical procedures were performed under aseptic
conditions and deep anesthesia induced by a xylazine and
ketamine cocktail injected intraperitoneally (xylazine 1.6
mg/kg; ketamine 64 mg/kg). The animals were kept in an
animal facility at a temperature of 20-22°C and a natural
day-night cycle. Sterilized food and water were available
ad libitum. All treatment of the animals was in accor-
dance with the European Convention for the Protection
of Vertebrate Animals Used for Experimental and Other
Scientific Purposes and controlled by the institutional
Ethics Committee of Masaryk University in Brno (Czech
Republic).

The left sciatic nerve was exposed at mid-thigh and
three silk ligatures (Ethicon 3-0) were applied to reduce
the nerve diameter by one-third in the rats undergoing
CCI. The animals were left to survive for 1 (n = 6), 3 (n =
6), 7 (n = 6) or 14 (n = 6) days. The left sciatic nerve was
exposed but no ligature was applied in the groups of
sham-operated rats surviving for 3 (n = 6) or 14 (n = 6)
days.
Behavioral tests
Withdrawal thresholds for mechanical allodynia and
thermal hyperalgesia were measured in both ipsi- and
contralateral hind and forepaws by Dynamic plantar
esthesiometer or Plantar test (UGO BASILE), respec-
tively. Rats were first acclimated in clear Plexiglas boxes
for 30 min prior to testing. The paws were tested alter-
nately with 5 minute intervals between tests 1 day before
operation and 1, 3, 7, and 14 days after operation. Five
latency measurements were taken for each paw during
each test session. In the case of thermal hyperalgesia,
withdrawal time was measured and the intensity radiance
(I.R.) was set on the value of 50. Data for mechanical allo-
dynia and thermal hyperalgesia were expressed as mean ±
S.E. of withdrawal thresholds in grams and withdrawal
latency in seconds, respectively.
ELISA immunoassay
At the end of the survival times, the animals were sacri-
ficed by carbon dioxide inhalation and the DRG of C7-C8
and L4-L5 segments were exposed bilaterally, removed,
and immediately collected into ice-cold PBS (pH 7.4)
containing 0.01% Tween-20 and protease inhibitor cock-
tail (Roche). The DRG removed from rats of each group
were collected into four distinct samples: ipsilateral (ipsi-
DRG) and contralateral (contra-DRG) cervical and lum-
bar DRG. The tissue samples were homogenized in ice-
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cold PBS containing 0.01% Tween-20 and protease inhib-
itor cocktail, and centrifuged (12,500 g for 12 min) to
obtain extract proteins. Blood samples were collected
into tubes containing heparin and protease inhibitor
cocktail (LaRoche, Switzerland). Plasma was immediately
separated by low-speed centrifugation (2500 g for 12
min). Bradford protein assay was used to measure total
protein concentration in the tissue supernatant and
plasma samples. Commercially available ELISA kits were
used for assessing TNF-α (R&D system, MN, USA, sensi-
tivity: 5 pg/ml) and IL-10 (BioSource International, Inc.,
CA, USA, sensitivity: 5 pg/ml) proteins according to the
manufacturers' instructions. Microplates were measured
using a SUNRISE Basic microplate reader (Tecan, Salz-
burg, Austria) and data were standardized as picograms
of TNF-α and IL-10 protein to 100 μg of total protein in
the supernatant.
Statistical analyses
Statistical analyses were made with STATISTICA, release
8.0 (StatSoft, Inc., USA). Behavioral data were evaluated
using Kruskal-Wallis one-way analysis of variance
(ANOVA), and p values less than 0.05 were considered to
be significant.

TNF-α and IL-10 protein were measured five times and
final data were expressed as mean ± S.D. for each group
of animals (naïve, CCI, sham-operated). The values of
TNF-α and IL-10 proteins obtained from naïve rats were
indicated as the baseline levels. Statistical differences
between the naïve and CCI or sham-operated groups for
particular periods of survival were tested by the Mann-
Whitney U-test, and p values less than 0.05 were consid-
ered to be significant.

Results
Behavioral tests
All rats operated on to create CCI of the sciatic nerve dis-
played a decreased withdrawal threshold for mechanical
allodynia and withdrawal latency of thermal hyperalgesia
in the ipsilateral hind paws. The contralateral hind paws
did not exhibit statistically significant changes of with-
drawal threshold for mechanical allodynia when com-
pared with 1 day before operation. Similarly, the forepaws
did not display either mechanical allodynia or thermal
hyperalgesia up to 14 days (Figure 1). The sham-operated
rats did not exhibit mechanical allodynia or thermal
hyperalgesia either ipsilaterally or contralaterally to CCI
(data not shown).
Baseline level of TNF-α and IL-10 proteins in the naïve DRG
No significant differences in the levels of TNF-α and IL-
10 proteins were obtained between the ipsilateral and
contralateral DRG of the same spinal level removed from
the naïve rats. ELISA revealed a significantly lower base-
line level of TNF-α protein in L4-L5 DRG (2.65 ± 0.93 pg/
100 μg) than in C7-C8 DRG (4.65 ± 0.93 pg/100 μg). Sim-

ilarly, the level of IL-10 protein was lower in L4-L5 DRG
(6.26 ± 0.82 pg/100 μg) when compared to C7-C8 DRG
(16.33 ± 0.89 pg/100 μg).
TNF-α protein level following CCI and the sham operation 
(Figure 2A)
L4-L5 DRG
Despite the unilateral CCI of the sciatic nerve, the level of
TNF-α protein remained close to the baseline level in L4-
L5 DRG of both sides for 1 and 3 days after operation. A
bilateral increase of TNF-α protein occurred in L4-L5
DRG after 7 and 14 days of CCI. The peak values were
measured after 7 days, when the level of TNF-α protein
was more than four times higher in the ipsi- and contral-
ateral L4-L5 DRG than in those from the naïve rats. Com-
pared to at 7 days of survival, the level of TNF-α protein
declined bilaterally in L4-L5 DRG removed 14 days after
CCI but remained significantly higher than in the naïve
DRG. In addition, a significantly higher level (p < 0.05) of
TNF-α protein was found in the ipsilateral than contralat-
eral L4-L5 DRG at the period of survival for 7 days. No
significant differences were noted between the ipsi- and
contralateral L4-5 DRG at 1, 3, and 14 days after CCI.
C7-C8 DRG
Surprisingly, unilateral CCI of the sciatic nerve induced
significant bilateral changes in the level of TNF-α protein
also in C7-C8 DRG. Similarly to L4-L5 DRG, an increase
in the level of TNF-α protein was measured bilaterally 7
and 14 days after operation. Unlike L4-L5 DRG, the peak
values of TNF-α protein were found bilaterally in C7-C8
DRG after 14 days of CCI, when they were more than
four times higher at both sides than in the naïve rats. No
significant differences in the levels of TNF-α protein were
measured between the ipsilateral and contralateral C7-C8
DRG up to 14 days after unilateral CCI of the sciatic
nerve.
Sham operation
The levels of TNF-α protein remained without significant
changes in both L4-L5 and C7-C8 DRG at 3 and 14 days
after the sham operation.
IL-10 protein level following CCI and sham operation 
(Figure 2B)
L4-L5 DRG
Unilateral CCI of the sciatic nerve induced a significant
bilateral increase of IL-10 protein level in L4-L5 DRG as
early as 1 day from the operation. The level of IL-10 pro-
tein peaked bilaterally in L4-L5 DRG after 3 days of CCI.
A subsequent sharp decline of IL-10 protein below the
baseline level of the naïve DRG was found in L4-L5 DRG
of both sides, but more so in the ipsilateral ones. The
baseline level of IL-10 protein was achieved bilaterally 14
days from the operation. With 1 day of CCI being the
exception, significant differences in IL-10 protein level
were detected between the ipsilateral and contralateral
L4-L5 DRG at 3, 7, and 14 days from operation.
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C7-C8 DRG
Significant changes of IL-10 protein levels were also
induced in C7-C8 DRG by the unilateral CCI of the sci-
atic nerve. While no changes were present 1 day from
CCI, an increased level of IL-10 protein was measured in
the ipsilateral C7-C8 DRG at day 3. As with L4-L5 DRG, a
bilateral decrease below the baseline level of the naïve
DRG was observed after 7 days. More distinct diminution
was found in DRG of the ipsilateral side. The level of IL-
10 protein was normalized 14 days from the operation, at
which time no significant differences of IL-10 protein
were noted between the ipsilateral and contralateral C7-
C8 DRG.

Sham operation
The sham operation for 3 days induced a significant
increase of IL-10 protein in the ipsilateral L4-L5 DRG. A
bilateral increase of IL-10 protein occurred in L4-L5 DRG
after 14 days, when the protein level was similar to that
from 3 days after CCI. No changes of the IL-10 protein
levels were found in C7-C8 DRG of the sham-operated
rats after 3 and 14 days.
TNF-α and IL-10 protein levels in plasma
The levels of TNF-α and IL-10 proteins were also mea-
sured in the plasma of all three principal groups of rats.
The baseline levels of TNF-α and IL-10 proteins in
plasma of the naïve rats averaged 0.12 ± 0.01 pg/100 μg

Results of behavioral tests in the rats operated on to create unilateral CCI of the sciatic nerve
Figure 1 Results of behavioral tests in the rats operated on to create unilateral CCI of the sciatic nerve. Progressive development of evoked 
mechanical allodynia and thermal hyperalgesia was found in the ipsilateral hind paws (A). No significant changes of mechanical allodynia and thermal 
hyperalgesia were measured in both either the ipsilateral and or contralateral forepaws (B). Data were expressed as mean ± SE of withdrawal thresh-
olds in grams and withdrawal latency in seconds for mechanical allodynia and thermal hyperalgesia, respectively. * indicates statistically significant 
difference (p < 0.05) when compared with measurement 1 day before operation.
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and 0.10 ± 0.02 pg/100 μg, respectively. No significant
changes were found in TNF-α and IL-10 protein levels in
the plasma of CCI or sham-operated rats when compared
with the baseline level of the naïve animals.

Discussion
There is unequivocal evidence that pro-inflammatory
cytokines mediate cellular and/or molecular changes in
DRG manifested by hyperexcitability of the primary sen-

Results of TNF-α and IL-10 protein levels in DRG
Figure 2 Results of TNF-α and IL-10 protein levels in DRG. The levels of TNF-α (A) and IL-10 (B) proteins were measured by ELISA in the ipsilateral 
(ipsi-DRG) and contralateral (contra-DRG) dorsal root ganglia of lumbar (L4-L5) and cervical (C7-C8) spinal segments removed from naïve rats and rats 
after unilateral CCI of the sciatic nerve or sham operation. * indicates statistically significant difference (p < 0.05) when compared the protein level of 
individual times of survival with the baseline level of naïve rats; † indicates statistically significant difference (p < 0.05) when compared the protein level 
of ipsilateral DRG with contralateral counterparts.
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sory neurons, and thus they contribute to both induction
and maintenance of neuropathic pain [20,24,32,33].

Chronic constriction injury (CCI) of a peripheral nerve
by chromic gut [34] is a widely used experimental model
with characteristic signs of neuropathic pain. The origi-
nal CCI model of neuropathic pain is not suitable for dis-
tinguishing the local inflammatory reaction induced by a
thread material and neuroinflammation as a manifesta-
tion of Wallerian degeneration of injured axons [35]. In
our experiments, therefore, we applied the sciatic nerve
ligation using a 3-0 sterilized thread (Ethicon) under
aseptic conditions to study levels of TNF-α and IL-10
proteins in DRG. The changes of TNF-α and IL-10 pro-
teins in the ipsi- and contralateral L4-L5 DRG as well as
C7-C8 DRG were therefore largely induced by traumatic
nerve injury and accompanying neuroinflammatory
response.

There is conclusive evidence that TNF-α is involved in
ectopic changes of DRG neurons inducing neuropathic
pain [36,37]. Immunofluorescence staining has revealed
that neuronal bodies, their satellite glial cells and ED-1+
macrophages infiltrating ipsilateral DRG are main cellu-
lar sources of TNF-α [20,38,39]. However, the number of
ED-1+ macrophages in DRG contralateral to nerve injury
was significantly increased no sooner than 4 weeks fol-
lowing CCI [25] and principally was not detected in DRG
heteronymous to injured nerve. Therefore, neuronal bod-
ies and their satellite glial cells are probably responsible
for elevation of TNF-α protein in the contralateral L4-L5
DRG and bilateral C7-C8 DRG following unilateral CCI
of the sciatic nerve.

Anti-inflammatory IL-10 is produced by a variety of
immune cell types, including cells of the monocyte/mac-
rophage lineage [40,41]. It has been also proven that IL-
10 is expressed predominantly in small-sized DRG neu-
rons [38]. Exogenous administration of anti-inflamma-
tory cytokine IL-10 impeded development of
prodynorphin-induced allodynia [42,43] and inhibited
endotoxin-induced hyperalgesia through downregula-
tion of proinflammatory cytokines [44,45]. In contrast,
results of experiments with IL-10 knockout (IL-10-/-)
mice or normal (IL-10 +/+) mice treated with IL-10 anti-
body indicate that endogenous IL-10 effectively increases
nociception [46].

Based on ELISA analysis, we found a higher baseline
level of TNF-α and IL-10 proteins in naïve DRG of the
cervical than lumbar spinal segments. The differences
could be caused by a presence of diverse populations of
the primary sensory neurons in various spinal cord levels
[47]. Moreover, natural heterogeneity in composition
alongside the neuraxis is also documented by a rostro-
caudal gradient of amino acid neurotransmitters in cere-
brospinal fluid [48].

A bilateral elevation of TNF-α protein in both the lum-
bar and cervical DRG was induced by unilateral CCI of
the sciatic nerve for 7 and 14 days, while the level of IL-10
protein was increased bilaterally in the lumbar DRG 1
and 3 days after CCI and in the ipsilateral cervical DRG 3
days from operation. Generally, these results indicate cer-
tain relationships between transient and early rise of anti-
inflammatory IL-10 and later increase of proinflamma-
tory TNF-α. IL-10 influences the proinflammatory cytok-
ines in various ways and prevents a transition of the
physiologic inflammatory reaction to a pathologic state
that may result in neuropathic pain. IL-10's action is
based on a selective inhibition of the synthesis and
release of proinflammatory cytokines [49]. Surprisingly,
IL-10 protein levels showed an extreme bilateral drop in
both the cervical and lumbar DRG 7 days from CCI. A
transient decrease of IL-10 protein level in DRG follow-
ing CCI may explain why various treatments increasing
local IL-10 concentration may be beneficial in neuro-
pathic pain states [30,50].

Cytokine networks are generally extremely intricate
with many cytokine-cytokine interactions. The nature of
cytokine-cytokine interactions is such that their net out-
put could be additive, synergistic, or antagonistic [51].
Peripheral nerve injury induces a neuroinflammatory
reaction with expression of essentially the same pattern of
cytokines in a highly ordered fashion [52]. The delicate
balance between proinflammatory and anti-inflamma-
tory cytokines is pivotal in formation of conditions suit-
able for successful nerve repair [53]. On the other hand,
dysregulation in neuroinflammatory response to nerve
injury as well as exogenous application of proinflamma-
tory cytokine (e.g., TNF-α, IL-1β, and IL-6) leads to
imbalance of the endogenous cytokine network that
results in a variety of disease states such as neuropathic
pain [54]. Although the altered levels of TNF-α and IL-10
proteins in DRG associated with the damaged nerve may
indicate a relation of cytokines to proved hypersensitivity
in ipsilateral hind paws, the results of contralateral DRG
as well as DRG non-associated with injured nerve also
argue for other role(s) of cytokines in reaction of the ner-
vous system to injury. Therefore, the results indicate that
the bilateral increase in the level of TNF-α and IL-10 pro-
teins in DRG following unilateral CCI is probably linked
with a general neuroinflammatory reaction of the ner-
vous system to injury rather than its being only a condi-
tion for development and maintenance of neuropathic
pain.
Changes of TNF-α and IL-10 protein level in the 
contralateral DRG
There is a growing body of evidence that a unilateral
nerve injury induces contralateral changes. The effect of
the unilateral peripheral nerve lesion on contralateral
non-lesioned structures was reviewed by Koltzenburg
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and colleagues [6]. Recently, further studies have verified
the concept of contralateral reaction to unilateral nerve
damage [7,39,55]. It is generally accepted that responses
to contralateral injuries are usually qualitatively similar
but smaller in magnitude and have a briefer time course
compared to ipsilateral changes [6]. However, our results
for TNF-α and IL-10 proteins analyzed by ELISA demon-
strate an effect of the unilateral nerve injury on the con-
tralateral DRG that is mostly of the same magnitude as
that on the ipsilateral DRG.
Changes of TNF-α and IL-10 protein levels in DRG 
heteronymous to injured nerve
According to previously published findings, a peripheral
nerve injury induces contralateral changes limited to the
homonymous nerves. Contralateral response of cytokines
after a unilateral sciatic nerve injury was restricted to the
homonymous opposite sciatic nerve but spared the femo-
ral nerve [7]. Our results reveal that unilateral CCI of the
sciatic nerve induced bilateral changes of TNF-α and IL-
10 proteins not only in homonymous L4-L5 DRG but also
in C7-C8 DRG that are heteronymous to the injured sci-
atic nerve. Similar quantitative changes of cytokine pro-
teins found in both the ipsilateral and contralateral DRG
of lumbar and cervical levels following unilateral CCI
suggest the same principal regulation of TNF-α and IL-10
protein levels. However, the mechanisms of signaling for
alteration of cytokines in the DRG unassociated with
injured nerve have not yet been clearly elucidated. Gener-
ally, it seems that extension of DRG reaction into hetero-
nymous levels can be principally mediated by neuronal or
non-neuronal signaling.

The first type of signaling of physiological imbalance
induced by unilateral nerve injury could be transferred to
homonymous contralateral or heteronymous DRG of
both sides by neuronal activity alongside neuronal path-
ways, e.g., through interneurons at the spinal cord seg-
ment or supraspinal levels [56-58]. It has been
demonstrated that rats with unilateral nerve injury dis-
played increased neuronal activity in wide dynamic range
(WDR) neurons on the contralateral side of the spinal
cord. A majority of WDR neurons responded to contral-
ateral noxious stimulation in CCI rats as compared to the
intact rats [57]. Moreover, there are long ascending pro-
priospinal systems linking the lumbar and cervical spinal
cord segments. The so-called long ascending propriospi-
nal neurons are defined as interneurons whose somata
are located in the lumbar spinal cord segments and whose
axons terminate in the cervical segments. They are in an
anatomically appropriate position to participate in coor-
dinating movements of hind limbs and forelimbs [59,60].

The present findings of bilateral changes in TNF-α and
IL-10 protein levels in DRG homonymous and heterony-
mous with damaged nerve indicate that systemic signal-
ing (e.g., via the bloodstream) cannot be excluded.

Wallerian degeneration distal to the sciatic nerve ligature
results in interruption of the blood-nerve barrier [61,62],
thus allowing diffusion of signaling molecules produced
by the Schwann and immune cells into blood flow [63,64].
An absence of blood-nerve barrier in the intact DRG [65-
67] supports a possibility for diffusion of circulating sig-
nal molecules into the microenvironment of the DRG not
associated with injured nerve. Several candidate mole-
cules have been suggested for signaling from damaged
nerve, including, for example, ATP, glutamate, comple-
ment or damaged nerve-derived molecules and toll-like
receptors (TLRs) [7,68-71]. The blood flow is probably
another route for transportation of the signaling mole-
cules from injured nerve stump to the proximity of affer-
ent neurons in DRG not only associated but also
unassociated with the damaged nerve.

We also cannot exclude a dynamic interplay among the
hypothalamic-pituitary-adrenal (HPA) axis, stress, and
neuroimmune reaction to nerve injury as they relate to
the development and maintenance of neuropathic pain
[72,73].
Changes of TNF-α and IL-10 protein levels in DRG of sham-
operated rats
The fact that there were no changes of TNF-α protein
levels in DRG removed from sham-operated rats indi-
cates that the surgical approach did not itself contribute
to elevation of this proinflammatory cytokine up to 14
days. In contrast to TNF-α protein, a significant elevation
of IL-10 protein in DRG from sham-operated rats may
reflect an injury to a small amount of afferent nerve fibers
during the surgical approach. This possibility is sup-
ported by later bilateral elevation of IL-10 in the lumbar
DRG (14 days from sham operation) while CCI induced
bilateral increase already after 1 day. In contrast, the fact
that there were no changes of TNF-α in DRG of sham-
operated rats after even 14 days could be explained by
belated regulation of TNF-α protein due to tissue damage
and as illustrated by the first significant alternation's
occurring as late as 7 days from CCI.

Conclusions
In conclusion, a peripheral nerve injury results in a shift
of DRG neuronal functions from normal maintenance
and neurotransmission toward survival and regeneration
status. Regeneration of nervous tissue is connected with
release of many biologically active substances, including
cytokines, that may induce neuropathic pain (for a
review, see Woolf, 2004)[74]. Bilateral changes of TNF-α
and IL-10 protein in both the lumbar and cervical DRG
following unilateral CCI were related to significant
decrease of thresholds for mechanical allodynia and ther-
mal hyperalgesia only in ipsilateral hind paws. Therefore,
our results indicate that bilateral increase in the level of
TNF-α and IL-10 in DRG following unilateral CCI is
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linked with general neuroinflammatory reaction of the
nervous system to injury rather than its being only a con-
dition for development and maintenance of neuropathic
pain. These findings may have implications for future
study design and therapeutic approaches to neuropathic
pain.
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