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Abstract

primary cortical neural cultures.

quantitative real-time PCR.

neurotoxicity mediated by activated macrophages.

Background: Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria,
can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS)
contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-
inflanmatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated
macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in

Methods: Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by
LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for
expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages
was measured via 2/, 7-dichlorofluorescin diacetate (DCFH,DA) oxidation. Cytokine expression was determined by

Results: LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1B, IL.-6 and TNF-a)
and of ROS. In contrast, BBI pretreatment (1-100 pg/ml) of macrophages significantly inhibited LPS-mediated
induction of these cytokines and ROS. Further, supernatant from BBl-pretreated and LPS-activated macrophage
cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated
macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 pg/ml), had no protective effect on
neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 pg/ml) had no
effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity.

Conclusions: These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from

Background

Inflammation plays a critical role in neurodegenerative
diseases such as Parkinson’s disease, multiple sclerosis,
Alzheimer’s disease, and HIV-associated dementia
(HAD). Activation of microglia, the intrinsic macro-
phages in the central nervous system (CNS) [1], is a
characteristic feature of most neurodegenerative diseases
upon systemic infection. Mounting evidence indicates
that macrophage/microglia activation contributes to
inflammation and neuronal injury in a number of neu-
rological disorders [2,3]. However, the cellular and
molecular relationships between infections outside the
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CNS and potential neuronal loss within the CNS is elu-
sive. It is known that in response to certain environment
toxins, macrophages/microglia can enter into an overac-
tivated state and release inflammatory cytokines and
reactive oxygen species (ROS) that cause neurotoxicity.
Lipopolysaccharide (LPS), a major constituent of gram-
negative bacteria, is a general activator of immune cells,
including microglia and macrophages. LPS induces
expression of pro-inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-a), interleukin-1f (IL-1B)
and IL-6 by microglia [4,5]. These pro-inflammatory
cytokines have direct or indirect neurotoxic properties,
contributing to neuronal injury [6]. LPS also can induce
ROS production in macrophages [7-9]. Microglial activa-
tion by LPS plays an important role in the progressive
and selective loss of dopaminergic (DA) neurons [10,11].
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Microglia-derived superoxide contributes to about 50%
of LPS-induced DA neurotoxicity [12,13].

Although microglia are vital in the inflammatory pro-
cess in the CNS, they may have less chance to be acti-
vated during a peripheral bacterial infection, as LPS may
not be able to enter the CNS due to the blood-brain
barrier (BBB). On the contrary, macrophages in periph-
eral systems have a greater chance to contact bacterial
endotoxins, including LPS, and thus become activated.
LPS-activated macrophages can overexpress pro-inflam-
matory cytokines that enter the CNS, leading to an
inflammatory environment. In addition, activated mono-
cytes have the ability to migrate into the CNS, causing
neuronal injury. Further, exposure of macrophages/
microglia to invading pathogens could lead to the induc-
tion of ROS, which can benefit the clearance of patho-
gens, but on the other hand, cause irreparable damage
to bystander neurons [14].

The Bowman-Birk inhibitor (BBI) is a soybean-derived
protease inhibitor that has the ability to inhibit trypsin
and chymotrypsin activities [15]. BBI is present in many
commercial soy foods, such as soymilk, soy-based infant
formula, tofu and bean curd. BBI has been shown to
have anti-inflammatory effect in both in vitro and
in vivo [16-18]. BBI has an immunoregulation effect
through inhibition of proteases released from inflamma-
tion-mediating cells [19]. BBI reduces autoimmune
inflammation and attenuates neuronal loss in a mouse
model of multiple sclerosis, thus ameliorating clinical
experimental autoimmune encephalomyelitis [20].
Because inflammation is an important player in macro-
phage/microglia-mediated neuronal injury, we sought to
determine whether BBI has the ability to inhibit LPS-
mediated macrophage activation, thus reducing release
of pro-inflammatory cytokines and subsequent neuro-
toxicity in primary cortical neural cultures.

Methods

BBI

Bowman-birk inhibitor (BBI) was purchased from
Sigma-Aldrich (Cat # T9777). The product is isolated
from Glycine max (soybean) and purified from crude
trypsin inhibitor (Sigma Cat # T9128). It consists of up
to 90% protein as assayed by Biuret, with the remainder
a phosphate buffer salt. The concentration used in this
study is 1-100 pg/ml (equal to 113.9 nm-11.3 pM).

Rat cortical neural cultures

Mixed cortical neural cultures were prepared from fetal
Sprague Dawley rat embryos at 17-19 days gestation [21].
Dissociated cortical cells were plated in poly-L-lysine
coated 96-well plates at 2 x 10* cells per well or in 24-well
plate at 5 x 10° cells per well in neurobasal media contain-
ing the serum and estrogen-free B27 supplement (Gibco
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BRL, Gaithersburg, MD). Cultures were maintained at
37°C in a humidified 5% CO, atmosphere for two weeks
prior to experimentation with medium changed no more
than once a week (50% liquid replacement).

Monocyte-derived macrophage cultures

Monocytes were obtained from the Center for AIDS
Research of the University of Pennsylvania School of
Medicine. The Center has IRB approval for blood collec-
tion from healthy donors. Monocytes were isolated by
elutriation; the purity of isolated monocytes is higher
than 95%. Blood samples were screened for common
blood-born pathogens and certified to be pathogen-free.
Freshly isolated monocytes were resuspended in DMEM
supplemented with 10% fetal bovine serum (FBS), peni-
cillin (100 U/ml), streptomycin (100 pg/ml) and 1%
non-essential amino acids. Cells were cultured in 48-
well plates (Corning CellBIND Surface, Corning Incor-
porated, Corning, NY) at 2.5 x 10° cells per well. The
medium was half-changed every two days. After culture
for 7 days, monocytes differentiated into macrophages.
Macrophages were first incubated with or without BBI
for 24 h and then further treated with LPS for additional
24 h. Supernatants collected from the cell cultures were
used to treat rat cortical neurons. Macrophages were
lysed in 0.5 mL Tri-reagent (Molecular Research Center,
Cincinnati, OH) for total RNA extraction.

Assessment of neurotoxicity

Neurotoxicity was examined by a cell-based ELISA
method which has been successfully used for measuring
macrophage-mediated neurotoxicity [22-25]. Briefly, rat
cortical neurons cultured in 96-well plates were treated
with supernatant from LPS- (1-100 ng/mL) and/or BBI-
(1-100 pg/mL) treated macrophage cultures. To block
the neurotoxicity of N-methyl-D-aspartic acid (NMDA;
Tocris Bioscience; Ellisville, MO), neural cultures were
pretreated with (+)-5-methyl-10,11-dihydro-5H-dibenzo-
cyclohepten-5,10-imine maleate (MK801; Sigma-Aldrich;
St. Louis, MO) for 1 h. After 24 h treatment, cells were
washed with PBS containing Ca*>*/Mg>* and then fixed
in 4% paraformaldehyde/4% sucrose for 1 h at room
temperature, followed by 1 h blocking in Block A (1 x
MEM, 10% FBS, 1 x penicillin/streptomycin, 15 mM
HEPES). Cells were then incubated with mouse mono-
clonal anti-MAP-2 antibody (Sigma-Aldrich, St. Louis,
MO) diluted in block A (1:1000) overnight at 4°C. After
a wash with PBS, goat a-mouse fB-lactamase TEM-1
(Molecular Probes, Eugene, OR) conjugate (1:500; 2 pg/
mL) was added into each well and incubated for 30 min
and then with fluorocillin green substrate (Invitrogen,
Carlsbad, CA) solution in PBS (1 pg/mL) for 1 h. Fluor-
escence was read at 485/527 nm in a fluorescence
microplate reader (PerkinElmer 1420 Multilabel
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Counter). The fluorescence of untreated neurons (con-
trol) was defined as 100%.

Immunofluorescence staining

Rat cortical cells were seeded on poly-L-lysine coated cover
slips in 24-well plates and cultured for two weeks before
treatment with supernatant from LPS-activated macro-
phage culture. After treatment, cells were washed with PBS
three times and fixed in ice-cold methanol for 5 min. Non-
specific sites were blocked in Block A for 30 min. Cells
were then incubated in mouse anti-MAP-2 antibody
(1:100) for 1 h, followed by Alexa 488-conjugated anti-
mouse IgG for 30 min. After Hoechst (2 pg/mL) staining,
the coverslips were mounted on glass slide and observed
under a fluorescence microscope (Olympus IX71).

Reactive oxygen species (ROS) detection

Macrophages were pretreated with or without BBI for 24 h
and then incubated with LPS for an additional 24 h. Cells
were then washed with serum-free medium, 2’7’-dichloro-
fluorescin diacetate (DCFH,DA; Molecular Probes), which
was then added to the cultures and incubated at 37°C for
30 min. ROS production was assessed using a fluorescence
microscope (Olympus IX71) at 488 nm.

Quantitative real-time RT-PCR

Total RNA was extracted with Tri-reagent and reverse
transcription was performed using the AMV transcrip-
tase and RNasin (Promega Co., Madison, WI) according
to the manufacturer’s instructions. The followings pri-
mers derived from the published cDNA sequences were
used for the PCR amplifications: TNF-a forward, 5'-
ATG AGC ACA GAA AGC ATG ATC-3’; TNF-a
reverse, 5’-TAC AGG CTT GTC ACT CGA ATT-3}
IL-1B forward, 5-AAG CTG ATG GCC CTA AAC AG-
3’; IL-1P reverse, 5-AGG TGC ATC GTG CAC ATA
AG-3’; IL-6 forward, 5-AGG AGA CTT GCC TGG
TGA AA-3’; IL-6 reverse, 5-CAG GGG TGG TTA
TTG CAT CT-3’; IL-10 forward, 5-CTT TAA TAA
GCT CCA CGA GAA AGG C-3’; IL-10 reverse, 5-CAG
ATC CGA TTT TGG AGA CC-3’; GAPDH forward, 5'-
GGT GGT CTC CTC TGA CTT CAA CA-3’; GAPDH
reverse, 5-GTT GCT GTA GCC AAA TTC GTT GT-
3’. The oligonucleotide primers were synthesized by
Integrated DNA Technologies, Inc. (Coralville, IA). PCR
was performed with Brilliant SYBR Green Master Mix
(Bio-Rad Laboratories, Hercules, CA) as described pre-
viously [26]. All values were calculated using the delta
delta Ct method and expressed as change relative to
expression of GAPDH mRNA.

ELISA
TNF-a and IL-6 gene expressions, identified from real
time PCR, were evaluated for protein expression using
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ELISA. After macrophages were treated as indicated in
the figure, conditioned medium was collected and levels
of TNF-a and IL-6 were measured using conventional
double sandwich ELISA kits from Invitrogen Inc. (Carls-
bad, CA). Assays were performed according to the man-
ufacturer’s instructions.

Statistical analysis

Data are expressed as the mean + SD for at least three
independent experiments. Statistical significance was
analyzed using Student’s t-test to compare the means of
two groups. For comparison of means of multiple
groups, one-way analysis of variance (ANOVA) was per-
formed followed by post Newman-Keuls test. Differ-
ences were considered to be statistically significant
when the p-value was less than 0.05.

Results

BBI treatment reduces neurotoxicity of LPS-activated
macrophages

We first examined whether supernatant from LPS-acti-
vated macrophage cultures could induce neuron death.
Although LPS, when directly added to the rat cortical
neuron cultures, had no cytotoxic effect (Figure 1A),
supernatant from LPS-activated macrophage cultures
induced the neuron death, which was evidenced by
decreased MAP-2 expression (Figure 1A and 1B). This
LPS/macrophage supernatant-mediated neuronal death
was positively related to amount of supernatant added
to the rat cortical neuron cultures (Figure 1A). In addition,
the concentration of LPS used for macrophage activation
was positively associated with degree of neurotoxicity of
the LPS/macrophage supernatants (Figure 1B). In contrast,
supernatant from BBI-pretreated and then LPS-activated
macrophage cultures produced reduced neurotoxicity,
compared to that from non-BBI-pretreated cultures
(Figure 2 and Figure 3A). Immunofluorescence assays also
demonstrated that BBI pre-treatment of macrophages
could alleviate the neurotoxicity of LPS-activated macro-
phages (Figure 2). The direct addition of supernatant from
BBI-treated macrophage cultures or of BBI to the neuronal
cultures had no cytotoxic effect (Figure 3B). In addition,
BBI treatment of neuronal cells had no protective effect
against the neurotoxicity of supernatant from LPS-
activated macrophage cultures (Figure 3C).

BBI inhibits LPS-induced inflammatory cytokines

To examine the mechanisms involved in BBI-mediated
inhibition of LPS-activated macrophages, we examined
whether BBI has the ability to inhibit the expression of
inflammatory cytokines induced by LPS. As shown in
Figure 4, LPS-treatment of macrophages resulted in induc-
tion of TNF-a., IL-1B and IL-6 (Figures 4A,B and 4C). This
LPS-mediated induction of cytokines, however, was
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Figure 1 LPS-activated macrophage (LPS/M®) supernatant induces neurotoxicity. (A) Seven-day-cultured macrophages were treated with
or without LPS (100 ng/ml) for 24 h and supernatants collected from the cell cultures were then used to treat rat cortical neurons for 24 h. The
percentage of supernatant added to the neuron cultures is indicated. In addition, neuron cultures were treated with either neurobasal media
only (control) or media plus NMDA (10 uM) or plus LPS (100 ng/ml). Supernatants collected from untreated and donor-matched macrophage
cultures (M@ SN) were also used as negative controls. (B) Neurotoxicity of activated macrophages treated with different concentrations of LPS.
Seven-day-cultured macrophages were treated with different concentrations (1-100 ng/ml) of LPS, and supernatant (1:10) was used to treat rat
cortical neuron cultures. The neuron marker MAP-2 was measured by a cell-based ELISA method. Data are expressed as mean + SD for three
independent experiments. (*P < 0.05, **P < 0.01, LPS/M® SN vs Md SN).
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Figure 2 Immunofluorescence assay of neuronal loss induced by LPS-activated macrophages (M®). Rat cortical neurons were treated
either with complete neurobasal medium (control) or with supernatant from unactivated donor-matched macrophage (M® SN), from LPS-
activated macrophage supernatant (LPS/M® SN), or from BBI-treated and LPS-activated macrophage supernatant (BBI/LPS/M® SN) for 24 h. Cells
were then washed with PBS and fixed in ice-cold methanol. Cells were incubated with mouse anti-MAP-2 antibody (1:100) for 1 h, then with
Alexa 488-conjugated anti-mouse IgG for 30 min. Scale bars: 100 um.
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Figure 3 Impact of BBI on rat cortical neuron cultures. (A) Effect of BBl on LPS/Md-mediated neurotoxicity. Supernatant either from LPS-
(100 ng/ml) activated macrophage cultures (LPS/M® SN) or from BBI- (1-100 pg/ml) treated and LPS-activated macrophage culture (BBI/LPS/M®
SN) was used to treat rat cortical neurons (1:10). Untreated and unactivated macrophage supernatant was used as a negative control (M® SN).
Data are expressed as mean + SD for three independent experiments. (*P < 0.05, **P < 0.01, BBI/LPS/M® SN vs LPS/M® SN without BBI). (B)
Effect of BBl on neuron death for rat cortical neurons. Rat cortical neurons were directly treated with BBI at the indicated concentrations or with
supernatant from either unactivated and untreated macrophage culture (M® SN) or BBI- (1-100 pg/ml) treated macrophage culture (BBI/M® SN)
for 24 h. Data are expressed as mean + SD for three independent experiments. (C) Effect of BBI treatment on neurotoxicity of LPS-activated
macrophages. Cortical neuronal cultures were treated with LPS-activated macrophage supernatant in the presence or absence of BBI for 24 h.
Data are expressed as mean + SD for three independent experiments.
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Figure 4 Effect of BBl on LPS-mediated cytokine expression. Macrophages were preincubated with or without BBI (100 pug/mL) for 24 h and
then treated with LPS (100 ng/mL) for an additional 24 h. (A-D) Total RNA extracted from the cells was subjected to real time RT-PCR mRNAs for
cytokine (TNF-a, IL-6, IL-10 and IL-18) mRNA expression. Data are expressed as mean + SD for three independent experiments. (*P < 0.05, **P <
0.01, LPS + BBI treatment vs LPS treatment only). (EF) Supernatants from macrophage cultures with indicated treatments were collected for
ELISA measurement of protein levels of TNF-a. and IL-6. Data are expressed as mean =+ SD for three independent experiments. (*P < 0.05, **P <
0.01, LPS + BBI treatment vs LPS treatment only).
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attenuated by pre-treatment of macrophages with BBI
(Figure 4). We also examined cytokine production in the
supernatants used to treat cortical neurons. Figure 4E and
4F show that LPS-induced release of TNF-a and IL-6 into
the culture supernatant was significantly inhibited by BBI
treatment. Although BBI or LPS treatment alone had little
effect on IL-10 expression in macrophages, BBI pretreat-
ment induced IL-10 expression in LPS-activated macro-
phages (Figure 4D).

BBI inhibits LPS-induced oxidative stress

Activated macrophages/microglia can produce ROS that
cause neurotoxicity [3]. Thus, we examined whether BBI
treatment of macrophages could reduce ROS production
in LPS-activated macrophages. As shown in Figure 5, BBI
pretreatment of macrophages significantly attenuated ROS
production in LPS-activated macrophages. Morphologi-
cally, LPS, when added to macrophage cultures, induced
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cell aggregation (Figure 5B). However, BBI pretreatment
of macrophages suppressed LPS-induced cell aggregation
(Figure 5C). BBI treatment alone had no effect on macro-
phage aggregation (Figure 5D). The aggregated macro-
phages were highly positive for DCFH,DA (indicative
of ROS production) (Figure 5B and 5F). BBI treatment
significantly reduced LPS-induced ROS production of
macrophages as indicated by the fluorescence intensity
quantitated by Image J (Figure 5E-H).

BBI has little effect on NMDA-mediated neuronal death

We also determined whether BBI has the ability to
reduce NMDA-mediated neuronal death. NMDA, when
added to rat cortical neuron cultures, resulted in neuron
death (Figure 6). MK801, a NMDA receptor antagonist,
could completely block this NMDA-induced cell death
(Figure 6). Pretreatment of rat cortical neurons with
MK801 could also block LPS/macrophage supernatant-

Control

LPS
(100ng/ml) &= =

BBI (100pg/ml)
+
LPS (100ng/ml)

BBl alone
(100ug/ml)

intensity, as quantified by Image J 1.43.

Figure 5 Effect of BBl on LPS-induced cell aggregation and production of reactive oxygen species (ROS). Macrophages were
preincubated with or without BBI (100 pug/mL) for 24 h and then treated with LPS (100 ng/mL) for an additional 24 h. Cells were washed with
serum-free medium and DCFH,DA was then added to the cultures, which were further incubated at 37°C for 30 min. ROS production in
macrophages was examined using a fluorescence microscope (magnification: x100). Macrophage aggregation was assessed using a phase
contrast microscope. Images presented are representative of three independent experiments. Values on the images indicate fluorescence

CM-H,DCFDA
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Figure 6 Effect of BBl on NMDA-induced neuronal death. Rat
cortical neurons were incubated with or without MK801 (5 uM)
and/or BBI (100 pg/ml) for 1 h and then treated with LPS- (100 ng/
ml) activated macrophage supernatant (LPS/M® SN) or NMDA (10
pM) for 24 h. Unactivated donor-matched macrophage supernatant-
(Md SN) treated cortical neuron cultures were used as controls.
Data are expressed as mean + SD of three independent

experiments. (**P < 0.01).

induced neurotoxicity (Figure 6). However, pretreatment
of rat cortical neurons with BBI had no effect on
NMDA-induced neurotoxicity (Figure 6).

Discussion

In the present study, we demonstrate that BBI inhibits the
neurotoxicity of LPS-activated macrophages. Because acti-
vated macrophages can produce inflammatory cytokines
that cause neuronal injury, we examined whether BBI
treatment of LPS-activated macrophages could inhibit the
expression of TNF-o,, IL-6 and IL-1f, which are known to
be toxic to neurons [22,27,28]. The suppression of these
cytokines’ production by BBI provides a sound mechanism
for BBI-mediated neuroprotection. In addition, BBI/LPS-
treated macrophages expressed increased levels of IL-10, a
known anti-inflammatory cytokine [29]. It is well known
that LPS can activate the nuclear transcription factor
NF-xB, leading to the induction of several proinflamma-
tory cytokines in macrophages [30,31]. BBI has the ability
to inhibit LPS-induced iNOS/NO and COX-2, which are
triggers of NF-£B activation [16]. Therefore, the inhibition
of proinflammatory cytokine expression by BBI could be
due to its ability to inhibit NF-xB activation. It is also
likely that BBI’s effect on IL-10 may involve a negative reg-
ulation of TLR4/LPS signalling, such as reduction of the
production of programmed cell death protein 4 (PDCD4).
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Recently, PDCD4 was found to promote activation of NF-
kB, suppressing IL-10 expression [32].

Despite extensive research on neurodegenerative dis-
eases, the mechanisms of neurodegeneration remain to
be determined. One accepted mechanism is that micro-
glia activation by environmental factors is responsible
for neuronal injury [33-36]. In addition to resident
microglia in the CNS, peripheral macrophages infiltrat-
ing into the CNS also play a role in neuroinflammation
and neuronal loss under several pathological conditions
[37]. Several studies have demonstrated that microglial
activation by stimuli such as LPS, amyloid B (AB) or
TNF-a is toxic to neurons [38,39]. Plasma LPS levels
are dramatically increased in certain pathological condi-
tions including sepsis, inflammatory bowel disease, and
HIV infection [40]. LPS triggers monocyte/macrophage
activation through CD14 and TLR4-mediated signalling,
resulting in release of inflammatory cytokines. During
neurodegeneration and neurodevelopment, inflammatory
cytokines play an important role in the modulation of
neuronal survival [22]. The neurotoxic potential of
inflammatory cytokines, such as IL-1f, IL-6 and TNF-a,
in the CNS has been extensively documented [41].
Experimentally, LPS has been extensively used as a
microglia/macrophage activator for the induction of
inflammatory dopaminergic neurodegeneration in ani-
mal models of Parkinson’s disease [2].

Although the mechanisms involved in the anti-
inflammatory actions of BBI remain to be determined,
the nature of BBI as a serine protease inhibitor
explains its ability to inhibit pro-inflammatory cyto-
kine production, as serine proteases induce release of
pro-inflammatory cytokines in epithelial cells [42,43]
and macrophages [44]. Neurophil-derived serine pro-
teases could cause non-infectious inflammatory pro-
cesses [45,46]. The serine protease inhibitor (FK-706,
ol-antitrypsin) attenuates chemotactic cytokine pro-
duction in human lung fibroblasts in vitro [47] and in
human whole blood in vivo [48]. The role of serine
protease in the induction of proinflammatory cyto-
kines has been further confirmed by a recent study
[49] demonstrating that AB-induced neurotoxicity is
greatly attenuated in serine racemase knockout mice
compared to wild type mice.

In summary, we provide compelling experimental
evidence that BBI, through inhibition of proinflammatory
cytokine production and induction of IL-10, attenuates
LPS/macrophage-induced neurotoxicity. BBI also inhibited
ROS production, which reduced macrophage aggregation
and activation. Since there is lack of effective treatments
for neurological disorders, to explore natural products
such as BBI as potential treatments for inflammation-
mediated neuronal injury is of great interest. Our data
support the need of future studies for the development of
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BBI-based supplementary therapy for the treatment of
neuroinflammation and neurodegeneration.
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