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Inhibition of interleukin-6 trans-signaling in the
brain facilitates recovery from lipopolysaccharide-
induced sickness behavior
Michael D Burton, Nathan L Sparkman and Rodney W Johnson*

Abstract

Background: Interleukin (IL)-6 is produced in the brain during peripheral infection and plays an important but
poorly understood role in sickness behavior. Therefore, this study investigated the capacity of soluble gp130
(sgp130), a natural inhibitor of the IL-6 trans-signaling pathway to regulate IL-6 production in microglia and
neurons in vitro and its effects on lipopolysaccharide (LPS)-induced sickness behavior in vivo.

Methods: A murine microglia (BV.2) and neuronal cell line (Neuro.2A) were used to study the effects of stimulating
and inhibiting the IL-6 signaling pathway in vitro. In vivo, adult (3-6 mo) BALB/c mice received an
intracerebroventricular (ICV) injection of sgp130 followed by an intraperitoneal (i.p.) injection of LPS, and sickness
behavior and markers of neuroinflammation were measured.

Results: Soluble gp130 attenuated IL-6- and LPS-stimulated IL-6 receptor (IL-6R) activation along with IL-6 protein
release in both microglial (BV.2) and neuronal (Neuro.2A) cell types in vitro. Moreover, in vivo experiments showed
that sgp130 facilitated recovery from LPS-induced sickness, and this sgp130-associated recovery was paralleled by
reduced IL-6 receptor signaling, mRNA, and protein levels of IL-6 in the hippocampus.

Conclusions: Taken together, the results show that sgp130 may exert an anti-inflammatory effect on microglia and
neurons by inhibiting IL-6 binding. These data indicate that sgp130 inhibits the LPS-induced IL-6 trans-signal and
show IL-6 and its receptor are involved in maintaining sickness behavior.

Background
Peripheral infection stimulates production of pro-inflam-
matory cytokines including interleukin (IL)-1b, IL-6, and
tumor necrosis factor-a (TNF-a). These cytokines use
neural and humoral pathways to convey a message to
the brain [1,2]. In the brain, the peripheral pro-inflam-
matory signal is mimicked by microglia, [3] and the
resulting cytokines target neurons to elicit sickness-
related behaviors that are typically adaptive [4]. How-
ever, excessive cytokine production by microglia is asso-
ciated with prolonged sickness behavior [5-8], cognitive
deficits [9-11], and affective disorders like anxiety and
depression [12,13]. A recent study showed IL-6 knock-
out mice were refractory to LPS-induced increases of
cytokines in the brain and cognitive deficits eluding to

the potential permissive effects of IL-6 during LPS-
induced sickness [14].
The IL-6 receptor is activated through two separate,

but related pathways; classical- and trans-signaling. Clas-
sical IL-6 receptor activation is facilitated through the IL-
6 ligand binding to its membrane-bound receptor. The
receptor consists of two subunits: the IL-6 receptor-alpha
chain (IL-6R), which binds IL-6, and the transmembrane
signaling subunit, glycoprotein 130 (gp130), which is the
intra-cellular signal transducer and is ubiquitously
expressed. Both IL-6R and gp130 are cleaved immediately
before the membrane spanning region by alternative spli-
cing or shed by proteolytic enzymes to produce a soluble
receptor located in extra-cellular matrix. It is important
to note that the expression pattern of IL-6R is limited to
few cells of the immune system and conservatively dis-
persed among other cell types, meaning classical signal-
ing is highly conserved. In contrast, gp130 is ubiquitously
expressed [15,16]. The basis of trans-signaling is soluble
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IL-6R (sIL-6R) binding to IL-6 in the extra cellular matrix
to form a IL-6/sIL-6R complex, which has an increased
binding affinity to membrane-bound gp130 subunits,
resulting in the capability of IL-6 production in any cell
type that expresses gp130 [17,18].
Upon binding through either the classical or trans-sig-

nal, gp130 dimerizes and autophosphorylates, resulting
in the activation of Janus kinase-1 and 2 (Jak1 & Jak2).
These tyrosine kinases phosphorylate the cytoplasmic
region of gp130 creating recruitment sites for signal
transducer and activation of transcription-3 (STAT3), a
Src-homology-2 (SH2) domain-containing signaling
molecule. Activated STAT3 forms a dimer, autopho-
sphorylates, and translocates to the nucleus where it
binds to enhancer elements of the IL-6 promoter region.
Thus the main consequence of both classical or trans-
signal IL-6 receptor action is to induce gene transcrip-
tion and subsequent synthesis and secretion of IL-6,
though trans-signaling allows this in many more cell
types, due to the ubiquitous expression of gp130 [15].
sIL-6R and soluble gp130 (sgp130) have varying effects
on circulating IL-6. Where sIL-6R acts as an agonist,
sgp130 acts as a partial antagonist, or decoy receptor, by
binding IL-6 or the IL-6/sIL-6R complex and prevents
the binding of membrane-bound gp130 and further sig-
nal transduction [19].
The action of IL-6 is heavily dependent on the loca-

tion of the receptors and the cell types exposed to the
cytokine. For instance, IL-6 binding to IL-6R located on
T-cells leads to the differentiation of stem line T-cells to
helper T cells [20] whereas in the gastro-intestinal tract,
IL-6 and its receptors on epithelial cells contribute to
peripheral disorders such as colitis and Crohn’s disease
[21]. However, studies examining IL-6 receptor signaling
or trans-signaling in the CNS are limited and we are
aware of no studies examining the extent to which IL-6
receptor signaling affects neuroinflammation and infec-
tion-related changes in behavior.
Therefore the purpose of this study was to assess clas-

sical and trans-signaling in neurons and microglia and
determine if inhibiting IL-6 receptor signaling in the
brain is sufficient to inhibit sickness behavior caused by
peripheral infection. The important results showed
treatment with sgp130 attenuated LPS-induced receptor
activation and production of IL-6 and enhanced recov-
ery of sickness behavior. These findings suggest that
inhibition of excessive production of IL-6 through its
signaling pathways during infection may be helpful in
preventing behavioral deficits.

Methods
BV.2 microglial and Neuro.2A neuronal cell culture
The murine microglia cell line, BV.2 (a gift from Linda
Van Eldik, Northwestern University, Evanston, IL) and

neuronal Neuro.2A cells (purchased from ATCC) have
been used as a model to investigate the neuroimmune
system [22,23]. Cells were maintained in 150-cm2 tissue
culture flasks (BD Falcon, Franklin Lakes, NJ) in DMEM
(Bio-Whittaker, Cambrex, MD) supplemented with 10%
FBS (Hyclone, Logan, UT), 200 mM glutamine, and 100
units/ml penicillin/streptomycin (Invitrogen, Carlsbad,
CA) at 37°C in a humidified incubator under 5% CO2.
Confluent cultures were passed by trypsinization. Cells
were centrifuged (5 min at 27°C, 200 × g), and culture
medium was removed. In all experiments, cells were re-
suspended in DMEM supplemented with 10% FBS and
seeded in six-well plates (BD Falcon, Franklin Lakes, NJ)
at a population of 3 ×105 - 5 × 105 cells per well over-
night at 37°C in a humidified incubator under 5% CO2

before treatments. Cells were treated with sterile saline
containing 0.1% BSA (vehicle), sIL-6R, or sgp130 (R&D
systems, Minneapolis, MN) for 1 h followed by treat-
ment with recombinant IL-6 (R&D systems, Minneapo-
lis, MN) or Escherichia coli LPS (serotype 0127:B8
Sigma, St. Louis, MO), for 20 min or 3 h, respectively.

Flow cytometry
Flow cytometric analysis of microglial and neuronal cell
surface markers was performed as described previously,
with a few modifications [24]. In brief, Fc receptors on
BV.2 microglia cells were blocked with anti-CD16/CD32
antibody (eBioscience, San Diego, CA) in a PBS-1%
BSA/sodium azide solution, and incubated with anti-
CD126 PE and anti-CD130 APC or anti-TLR-4 PE
(eBiosciences, San Diego, CA), fluorescently labeled iso-
type antibodies for PE and APC (eBiosciences, San
Diego, CA) were used for controls. Expression of surface
receptors was determined using a Becton-Dickinson LSR
II Flow Cytometer (Red Oaks, CA). Fifty thousand
events were collected and flow data were analyzed using
FCS Express software (De Novo Software, Los Angeles,
CA).

Animals and surgery
Adult (3-6 months) male BALB/c mice obtained from
our in-house breeding colony were used in all experi-
ments. Mice were housed in polypropylene cages and
maintained at 21°C under a reverse-phase 12 h light-
dark cycle (lights off at 07:00) with ad libitum access to
water and rodent chow.
Surgery
Intracerebroventricular (ICV) cannulation was per-
formed under aseptic conditions as described previously
[25]. In brief, mice were deeply anesthetized with an
intraperitoneal (i.p.) injection of ketamine and xylazine
(100 and 10 mg/kg, respectively) and the surgical site
was shaved and sterilized. They were positioned in a
stereotaxic instrument (David Kopf Instruments,
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Tujunga, CA) so that the frontal and parietal bones of
the skull were parallel to the surgical platform. An inci-
sion roughly 1.5 cm in length was made on the cranium
to reveal the bregma and a 26-gauge stainless steel can-
nula (Plastics One, Roanoke, VA) was placed in the
right lateral cerebral ventricle according to predeter-
mined stereotaxic coordinates (lateral 1.6 mm and
antero-posterior 1 mm to the bregma, and horizontal 2
mm from the dura mater). The cannula was secured
using two adjacent stainless steel screws and cranioplas-
tic cement (Plastics One, Roanoke, VA). A dummy can-
nula (Plastics One, Roanoke, VA) was inserted in the
guide cannula to prevent occlusion and infection. Mice
were injected subcutaneously with buprenorphine (0.05
mg/kg) following surgery and then again 8-12 h later to
aid with any post-operative discomfort. Mice were pro-
vided a minimum of seven days to recover from any dis-
comfort or weight loss before any treatment or
behavioral test. Accurate placement of the cannula was
confirmed by allowing 2 μl of sterile saline to flow via
gravity into the lateral ventricle. If cannula placement
could not be confirmed, the animal was excluded from
the study. All procedures were in accordance with the
National Institutes of Health Guidelines for the Care
and Use of Laboratory Animals and were approved by
the University of Illinois Institutional Animal Care and
Use Committee.

Animal studies
Mice were handled 1-2 min each day for seven days
before experimentation to acclimate them to routine
handling. On test day, animals were injected ICV with
sterile saline containing 0.1% BSA (vehicle) or 100 ng
sgp130 dissolved in 2 μl vehicle. At the same time as
the ICV injection, mice were injected i.p. with sterile
saline or LPS (0.33 mg/kg BW or 10 μg, serotype 0127:
B8, Sigma, St. Louis, Mo.). The LPS dosage was selected
because it elicits a proinflammatory cytokine response
in the brain, which results in mild transient sickness
behavior in adult mice [26]. Tests were conducted dur-
ing the dark phase (between 07:00 and 19:00) of the
light/dark cycle under infrared lighting to aid video
recording. Baseline behavior was taken just before treat-
ment administration (0 h) and 4, 8, and 24 h afterwards.
To measure changes in cytokines and signaling mole-

cules, mice not exposed to the behavior paradigms were
injected ICV with vehicle or sgp130 (100 ng) and i.p.
with sterile saline or LPS (10 μg) and killed 8 h later by
CO2 asphyxiation. Blood samples were collected via car-
diac puncture into EDTA-coated syringes to obtain
plasma, and the brain was rapidly removed and dis-
sected to obtain hippocampal tissue. Plasma and hippo-
campal tissue were snap-frozen in liquid nitrogen and
stored at -80°C until later analysis.

Behavioral tests
Social exploratory behavior
To assess motivation to engage in social exploration, a
novel male juvenile conspecific (20-30 days old) from our
in-house colony was introduced into the test subject’s
home cage for a 7 min period. Mice were video recorded,
and the duration engaged in social investigation was deter-
mined from the video records by a trained observer who
was blind to experimental treatments. Social behavior was
determined as the amount of time that the experimental
animal spent investigating (e.g. trailing, anogenital sniffing)
the juvenile. Baseline social behavior was determined for
all experimental treatments at the 0 h, for a 7 min period.
Statistical analysis revealed there were no significant differ-
ences between treatment groups at baseline. The results
are expressed as percent depression in time engaged in
social behavior compared to respective baseline measures.

Western immunoblotting
To assess IL-6 receptor signaling in CNS cells in vitro,
BV.2 and Neuro.2A cells were harvested and in vivo,
mouse hippocampal tissue was unthawed, and lysed in
ice cold lysis buffer containing: 100 mM HEPES (7.5 pH),
150 mM NaCl, 1% Nonidet P-40 (U.S. Biological,
Swampscott, MA), 2 mM EGTA, 2 mM Sodium Ortho-
vanadate, Protease Inhibitor cocktail (100 mM EDTA, 1
μg/mL AEBSF, Bestatin, Pepstatin A, Leupeptin, Aproti-
nin, and E-64), and 1 mM PMSF and centrifuged at
11000 × g for 10 min at 4°C to remove all cellular debris.
Protein concentration was determined using the BCA
Protein Assay according to the manufacturer’s protocol
(Bio-Rad, Hercules, CA). Lysate concentration was then
normalized and denatured in SDS/PAGE buffer at 95°C
and stored at -20°C until use. All lysates were electro-
phoresed and separated on a 7.5% SDS-PAGE gel, and
transferred onto nitrocellulose membranes (GE Health-
care, Minneapolis, MN). The membranes were blocked
with 5% non-fat milk and incubated with anti-phosphory-
lated STAT3 (tyr-705) antibody (Cell Signaling, Danvers,
MA) overnight at 4°C. After incubation with an HRP-
conjugated secondary antibody, the protein bands were
detected with a chemiluminescenct substrate (Cell Sig-
naling, Danvers, MA) and Bio-Max film (Eastman Kodak
Company, Rochester, NY). For detection of total STAT3
protein, the membranes were stripped with stripping buf-
fer (2% SDS, 6.25 mM Tris. HCL (6.8 pH), 0.70% b-ME)
followed by overnight incubation with anti-STAT3 anti-
body (Cell Signaling, Danvers, MA) at 4°C. Immunoblot
results were quantified using ImageJ 1.41 software (NIH).

Cytokine detection in cell supernatant, hippocampus, and
plasma
Hippocampal tissue was lysed in ice cold lysis buffer
and protein concentrations were determined using the
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BCA protein assay according to manufacturer’s proto-
col. For hippocampal tissue, the antibodies and stan-
dards for the IL-6 ELISA were used according to the
description by the manufacturer (eBiosciences San
Diego, CA). Cell supernatants and plasma samples were
assayed for IL-1b, TNF-a, IL-6, and the anti-inflamma-
tory cytokine IL-10, using multiplexed bead-based
immunoassay kits combined with a Cytokine Reagent
kit as described by the manufacturer (Bio-Rad, Hercules,
CA).

Cytokine mRNA measurement by quantitative real-time
PCR
Total RNA from hippocampus was isolated using the
Tri Reagent protocol (Sigma, St. Louis, MO.) A Quanti-
Tect Reverse Transcription Kit (Qiagen, Valencia, CA)
was used for cDNA synthesis with integrated removal of
genomic DNA contamination according to the manufac-
turer’s protocol. Quantitative real time PCR was per-
formed using the Applied Biosystems (Foster, CA)
Assay-on Demand Gene Expression protocol as pre-
viously described [27]. In brief, cDNA was amplified by
PCR where a target cDNA (IL-6, Mm00446190_m1; IL-
1b, Mm00434228_m1; TNF-a, Mm00443258_m1; IL-10,
Mm00439616_m1, IL-6R, 00439653_m1; and gp130,
mM00439665_m1) and a reference cDNA (glucose-3
phosphate dehydrogenase, Mm99999915_g1) were
amplified simultaneously using an oligonucleotide probe
with a 5’ fluorescent reporter dye (6-FAM) and a 3’
quencher dye (NFQ). PCR reactions were performed in
triplicate under the following conditions: 50°C for 2
min, 95°C for 10 min, followed by 40 cycles of 95°C for
15 sec and 60°C for 1 min. Fluorescence was determined
on an ABI PRISM 7900HT-sequence detection system
(Perkin Elmer, Forest City, CA). Data were analyzed
using the comparative threshold cycle (Ct) method, and
results are expressed as fold difference.

Statistical analysis
All data were analyzed using Statview and Statistical
Analysis System software (SAS Inst., Cary, NC). Beha-
vioral data were subjected to a three-way ANOVA
(sgp130 × LPS × Time) using repeated measures in
which Time (0, 4, 8, and 24 h) was a within subjects
measure, and sgp130 and LPS were between subjects
measures. Cytokine mRNA and protein levels were ana-
lyzed using a two-way ANOVA (sgp130 × LPS). Phos-
phorylation of STAT3 levels were analyzed using a two-
way ANOVA (sIL-6R or sgp130 × LPS). Post hoc Stu-
dent’s t test of least square means was used to deter-
mine if treatment means were significantly different
from one another (P <0.05). All data are presented as
mean ± SEM.

Results
IL-6 and LPS induce STAT3 phosphorylation in microglia
and neurons
To verify the presence of the subunits involved in IL-6
and LPS signaling, the cell surface expression of IL-6R,
gp130, and TLR-4 on BV.2 and Neuro.2A cells was
examined. Figure 1A shows more than 50% of the
microglial BV.2 cells expressed gp130 while nearly 90%
expressed IL-6R; approximately 50% of the BV.2 cells
expressed both IL-6R and gp130. In contrast, about 90%
of the Neuro.2A cells expressed gp130, 3% expressed IL-
6R, and 3% co-expressed IL-6R and gp130. Approxi-
mately 80% of the BV.2 cells expressed TLR-4 compared
to 30% of the Neuro.2A cells (Figure 1B). Although IL-6
can activate multiple transcription factors (e.g., STAT3,
AP-1, CREB), in CNS cells activation of the IL-6 recep-
tor upregulates STAT3 phosphorylation [15,28,29].
Thus, the capacity of IL-6 to induce the phosphorylation
of STAT3 in BV.2 and Neuro.2A cell cultures was
examined. Figure 2 shows that IL-6 at a higher concen-
tration (50 ng/mL) increased phosphorylated STAT3
similarly in microglia [F (1,48) = 12.515, p < 0.001] and
neurons [F (1,50) = 11.115, p < 0.01]. However, at a
lower concentration (10 ng/mL), IL-6 only increased
STAT3 phosphorylation in microglia [F (1, 14) = 37.384,
P <.001], which is consistent with the greater proportion
of these cells that expressed IL-6R. These findings sug-
gest that classic and trans-signaling can occur on both
neurons and microglia, although neurons may be more
readily regulated through the mechanism of trans-sig-
naling since gp130 is highly expressed on this cell type.

IL-6 trans-signaling in microglia and neurons
Previous studies have shown that gp130 is expressed con-
stitutively on all cell types [30,31] and this expression facil-
itates trans-signaling in the presence of IL-6 and sIL-6R
[17,18,32]. Figure 3A shows that pretreatment of microglia
and neurons with sIL-6R increased IL-6-induced STAT3
phosphorylation [F (2, 55) = 4.963, p < 0.01] and [F (2,53)
= 7.642, p < 0.001], respectively. Consistent with the
increase in STAT3 phosphorylation, a sIL-6R × LPS inter-
action was evident whereby sIL-6R upregulated LPS-
induced IL-6 production in microglia [F (2,55) = 3.419, p
< 0.05], and neurons [F (2,53) = 3.619, p < 0.04]. Although
not statistically significant, there was some constitutive
STAT3 phosphorylation and IL-6 expression in samples
pretreated with sIL-6R (Figure 3A and 3B).

sgp130 attenuated IL-6R activation in microglia and
neurons
We next investigated the ability of sgp130 to alter phos-
phorylation of STAT3 and expression of IL-6. A sgp130
× LPS interaction revealed that pretreatment of BV.2
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microglial and Neuro.2A neuronal cells with sgp130
decreased LPS-induced activation of STAT3 [F (2,59) =
3.736, p < 0.03] and [F (2,60) = 4.385, p < 0.02], respec-
tively and inhibited LPS-induced IL-6 production in
both BV.2 [F (2,59) = 3.253, p < 0.05] and Neuro.2A
cells [F (2,60) = 3.680, p < 0.04] (Figure 4A and 4B,
respectively). These data demonstrate that sgp130 inhi-
bits LPS-induced IL-6 production in microglia and neu-
rons. The LPS-induced secretion of IL-1b, TNF-a, and
IL-10 was not affected by sgp130 (data not shown).

sgp130 inhibits LPS-induced sickness behavior
Brain microglia and neurons produce inflammatory
cytokines, including IL-6, that induce sickness behavior.

Given the in vitro results, we investigated the effect of
centrally administered sgp130 on LPS-induced sickness
behavior. Social exploratory behavior was used to mea-
sure sickness. Three-way ANOVA of social behavior
revealed a significant LPS × time × sgp130 interaction
[F (3,48) = 6.280, P < 0.01]. As expected, LPS treatment
decreased social exploratory behavior in a time-depen-
dent manner [F (3,48) = 15.896, p < 0.001]. LPS induced
transient sickness, as the behavior of mice given LPS
returned to baseline by 24 h post-injection (Figure 5).
However, behavior of mice treated ICV with sgp130
prior to LPS returned to normal sooner. That sgp130
did not inhibit LPS-induced sickness behavior at 2 or 4
h after LPS treatment but did later, suggests the IL-6
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trans-signaling pathway is important for maintaining
sickness behavior but not for its induction.

sgp130 attenuated STAT3 phosphorylation and IL-6 gene
expression and protein in the brain
Because sgp130 inhibited LPS-induced sickness behavior
8 h post-injection, hippocampal tissue and plasma was
collected from a separate group of sgp130- and LPS-
treated mice at the 8 h time point to assess STAT3
phosphorylation and IL-6 expression. Similar to the in
vitro results, i.p. LPS upregulated STAT3 phospho-pro-
tein in the hippocampus [F (1, 19) = 369.003, p <

0.0001]. There was a sgp130 × LPS interaction [F (1,19)
= 22.293, P < 0.001] whereby STAT3 phosphorylation
was blunted when mice were given ICV sgp130 (Figure
6A). There was also a significant sgp130 × LPS interac-
tion [F (1,19) = 5.108, P < 0.02] whereby sgp130
decreased the amount of LPS-induced IL-6 mRNA in
the hippocampus, although it did not significantly affect
IL-1b or TNF-a mRNA (Figure 6B). To determine if the
effect of sgp130 was also apparent at the protein level,
LPS-induced IL-6 protein was measured. As expected,
LPS alone increased IL-6 protein in the hippocampus;
however, a sgp130 × LPS interaction [F (1,21) = 42.921,
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p < 0.0001] indicated that co-administration of sgp130
inhibited the LPS-induced increase in IL-6 (Figure 6C).
Taken together, these results show that sgp130-related
changes in LPS-induced social behavior are paralleled by
sgp130-associated changes in the brain.
To assess the effect of ICV sgp130 on the peripheral

cytokine response to i.p. LPS, plasma was assayed for
IL-1b, IL-6, IL-10, and TNF-a. Plasma levels of all four
cytokines was increased after LPS treatment and this
was not affected by sgp130 (Table 1), suggesting ICV
sgp130 acts locally in the brain.

Discussion
Bi-directional communication between the periphery
and the brain is important for the appropriate response
to an immune stimulus [33]. During peripheral infec-
tion, pro-inflammatory cytokines are produced in the
brain and play a role in adaptive sickness behavior.
However, an excessive cytokine response in the brain is
associated with prolonged sickness behavior [5-8], cog-
nitive deficits [9-11], and increased anxiety [12,13]; and
the specific role of IL-6 has not been extensively stu-
died. We investigated the capacity of sgp130 to block
IL-6 production in microglia and neurons in vitro and
explored the effects of sgp130 on LPS-induced sickness
behavior in vivo. In vitro, sgp130 attenuated LPS-stimu-
lated IL-6R activation along with IL-6 protein release in

both microglial (BV.2) and neuronal (Neuro.2A) cell
types. Moreover, in vivo experiments showed that ICV
sgp130 facilitated recovery from LPS-induced sickness,
and this sgp130-associated recovery was paralleled by
reduced IL-6 mRNA and protein levels in the
hippocampus.
The present study demonstrates that murine microglia

and neurons have the potential to produce IL-6 through
both a classic and trans-signaling pathway. In two-color
flow cytometry experiments, we showed that BV.2 and
Neuro.2A cells expressed both gp130 and IL-6R on their
cell surface, though expression differed in each cell type.
The findings indicate that classic and trans-signaling are
important on both neurons and microglia, though neu-
rons may be more readily regulated through the
mechanism of trans-signaling. Previous studies report
that the presence of the sIL-6R elicits an exaggerated
production of IL-6 protein [32,34,35]. Consistent with
these reports, we found that pretreatment of sIL-6R led
to an IL-6- and LPS-induced increase of IL-6 protein in
microglia and neurons. This response is presumably eli-
cited by the ligand and soluble receptor forming a sIL-
6R/IL-6 complex. This complex has the ability to bind
to the gp130 transmembrane receptor signal transducer
and activate intracellular signals that produce IL-6 in
any cell type via this trans-signaling mechanism.
LPS binds TLR-4, which we confirmed was present on

both microglia and neurons. Upon binding, LPS induces
upregulation of the NF-�B transcription factor that
binds promoter regions to stimulate the production of
IL-6 along with a milieu of other cytokines (e.g. IL-1b,
TNF-a, and IL-10) [36]. Soluble gp130 inhibits IL-6
trans-signaling but also regulates IL-6 related cytokines
oncostatin M (OSM) and leukemia inhibitory factor
(LIF). However, sgp130 has a much lower affinity for
OSM and LIF than for the IL-6/sIL-6R complex [19]
and would not be expected to affect either cytokine at
the dose used here [19,37]. Therefore, using sgp130
allowed us to investigate the effects of IL-6 after LPS
treatment, while leaving all other cytokines unaffected.
Successful activation of the IL-6R is noted by the

dimerization of gp130, resulting in an intracellular cas-
cade that forms recruitment sites for STAT3 in the
cytoplasmic region. STAT3 homodimerizes, autopho-
sphorylates, then translocates to the nucleus and binds
to enhancer elements of IL-6 to induce gene transcrip-
tion. Here, STAT3 was upregulated in response to both
IL-6 and LPS in BV.2 and Neuro.2A cells and pretreat-
ment with sIL-6R led to an increased IL-6- and LPS-
induced STAT3 phosphorylation. However, when pre-
treated with sgp130, IL-6 and LPS-stimulated BV.2 and
Neuro.2A cells displayed a decrease in STAT3 phos-
phorylation. These data agree with other studies using
sgp130 to inhibit IL-6 signaling in peripheral models of
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inflammation such as arthritis, peritonitis, and colitis
[38-40]. To our knowledge, this is the first study to
report that pretreatment with sgp130 attenuated LPS-
induced IL-6 protein secretion in CNS-derived cells.
LPS activation of the peripheral innate immune sys-

tem stimulates a robust secretion of inflammatory cyto-
kines through the NF-�B pathway and these cytokines
are relayed to the CNS via vagal nerve afferents, and
humoral and diffusive pathways [1,2]. Once in the brain
this inflammatory signal is mimicked by innate immune
cells [3,41,42] and targets neurons which elicit a sick-
ness behavior response that includes general malaise,
decreased activity, decreased social interaction,
decreased food and water intake (weight loss), and sleep
dysregulation [4,33,43]. We therefore investigated the
effects of ICV sgp130 in vivo and hypothesized that,
given the role of IL-6 in neuroinflammatory responses;
it would attenuate LPS-induced sickness behavior and
IL-6 production. Here we show that sgp130 was effec-
tive in facilitating the recovery from LPS-induced social
exploratory behavior as early as 8 h in mice. In addition
to facilitating recovery from LPS, sgp130 attenuated
receptor activation, gene expression, and production of
IL-6 in adult mice 8 h after LPS injection. Consistent
with previous studies [24,26,44,45], a reduction in brain
cytokines did not prevent the initial induction of LPS-
induced sickness behavior seen at 2-4 h post-injection,
but rather facilitated the recovery from sickness starting
at the 8 h time point [32,34,35]. In this model, the
inability of sgp130 to block the onset of sickness beha-
vior can be attributed to the fact that LPS induces mul-
tiple proinflammatory cytokines that have redundant
properties and inhibition of a single cytokine is not suf-
ficient to block the initial sickness. It is noteworthy that
a study showed that LPS-induced sickness behavior was
blocked only if IL-1b, IL-6, and TNF-a were antago-
nized simultaneously [46].
This facilitation in recovery from LPS-induced sick-

ness has been observed in various nutritional and phar-
macological interventions [5,47-49] and may be of
particular importance when considering conditions
where an exaggerated response is elicited during a
primed inflammatory state, such as in overexpressing
transgenic animals [9,11], prion disease [6], and aging

[7,8,10]. We have previously demonstrated that aged
animals display an exaggerated neuroinflammatory and
sickness behavior response after activation of the periph-
eral immune system [7] and it appears that primed
microglia are responsible for this exacerbated phenotype
[13,44,50]. We and others have shown interventions that
are anti-inflammatory are able to ameliorate the exag-
gerated cytokine response in the brain as well as the
mal-adaptive behavioral response that results from per-
ipheral infection [5,24,47-49,51]. Based on the data
obtained from this study, it is possible that sgp130 will
abrogate the prolonged LPS-induced alterations in sick-
ness behavior, cognition, as well as exaggerated IL-6
levels exhibited in aged mice.

Conclusion
Studies have highlighted the potential therapeutic role of
sgp130 in treating inflammation; it has been shown to
suppress the severity of experimentally-induced arthritis,
modulate leukocyte trafficking, and mitigate the effects
of colitis and colon cancer [18,40,52-54]. The current
study is the first to extend the body of literature and
show the effectiveness of sgp130 in inhibiting IL-6 sig-
naling in cells of the CNS and in brains of animals. The
present results suggest that the use of sgp130 as an inhi-
bitor of the IL-6 pathway in an array of inflammatory
conditions, from arthritis to neuroinflammatory disor-
ders, may mitigate IL-6 expression and have a beneficial
effect on behavioral responses.
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Table 1 Plasma cytokines 8 h after sgp130 and LPS

Vehicle (ICV) sgp130 (100 ng) (ICV) p < 0.05 interaction

Saline (i.p.) LPS (10 μg) (i.p.) Saline (i.p.) LPS (10 μg) (i.p.) sgp130 LPS sgp130 × LPS

IL-1b 206.82 ± 86.19 1113.12 ± 24.48 191.10 ± 85.12 1543 ± 695.96 0.537 0.009* 0.513

IL-6 142.87 ± 117.79 2873.03 ± 994.50 96.50 ± 8.41 2682.06 ± 669.86 0.820 0.001* 0.955

TNF-a 325.89 ± 54.60 987.55 ± 104.77 322.95 ± 73.31 947.93 ± 119.32 0.829 < 0.0001* 0.852

IL-10 56.39 ± 23.01 407.34 ± 92.56 46.72 ± 11.47 447.22 ± 174.13 0.764 0.002* 0.719
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