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Abstract

Background: Organophosphorus nerve agents irreversibly inhibit acetylcholinesterase, causing a toxic buildup of
acetylcholine at muscarinic and nicotinic receptors. Current medical countermeasures to nerve agent intoxication
increase survival if administered within a short period of time following exposure but may not fully prevent
neurological damage. Therefore, there is a need to discover drug treatments that are effective when administered
after the onset of seizures and secondary responses that lead to brain injury.

Methods: To determine potential therapeutic targets for such treatments, we analyzed gene expression
changes in the rat piriform cortex following sarin (O-isopropyl methylphosphonofluoridate)-induced seizure.
Male Sprague-Dawley rats were challenged with 1 X LDsq sarin and subsequently treated with atropine
sulfate, 2-pyridine aldoxime methylchloride (2-PAM), and the anticonvulsant diazepam. Control animals
received an equivalent volume of vehicle and drug treatments. The piriform cortex, a brain region particularly
sensitive to neural damage from sarin-induced seizures, was extracted at 0.25, 1, 3, 6, and 24 h after seizure
onset, and total RNA was processed for microarray analysis. Principal component analysis identified sarin-
induced seizure occurrence and time point following seizure onset as major sources of variability within the
dataset. Based on these variables, the dataset was filtered and analysis of variance was used to determine
genes significantly changed in seizing animals at each time point. The calculated p-value and geometric fold
change for each probeset identifier were subsequently used for gene ontology analysis to identify canonical
pathways, biological functions, and networks of genes significantly affected by sarin-induced seizure over the
24-h time course.

Results: A multitude of biological functions and pathways were identified as being significantly altered following
sarin-induced seizure. Inflammatory response and signaling pathways associated with inflammation were among
the most significantly altered across the five time points examined.

Conclusions: This analysis of gene expression changes in the rat brain following sarin-induced seizure and the
molecular pathways involved in sarin-induced neurodegeneration will facilitate the identification of potential
therapeutic targets for the development of effective neuroprotectants to treat nerve agent exposure.
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Background

Sarin (O-isopropyl methylphosphonofluoridate) is a
toxic organophosphorus (OP) nerve agent that was first
discovered on October 10, 1938, by German scientists
who were originally tasked with synthesizing more
potent pesticides [1]. The production and stockpiling of
sarin and other chemical warfare agents (CWAs) was
banned by the Chemical Weapons Convention of 1993.
However, OP nerve agents still remain a threat in
armed conflicts and terrorist attacks, such as the terror-
ist sarin gas attack on the Tokyo subway in 1995 by
members of the Japanese Uhm-Shinrikiu cult; the attack
resulted in injuries to more than 5,500 civilians and 12
deaths [2,3]. CWAs are likely to be a weapon of choice
for many other terrorist organizations because they are
relatively accessible or simple to produce, easy to trans-
port, and can be delivered in mass quantities [4,5].

Like other OP nerve agents, sarin irreversibly inhibits
acetylcholinesterase (AChE), causing an accumulation of
acetylcholine (ACh) at cholinergic synapses. This ACh
buildup results in a cholinergic crisis due to overstimu-
lation of muscarinic and nicotinic receptors in the cen-
tral and peripheral nervous system, including the
neuromuscular junction [4,6,7]. A victim exposed to
these CWAs initially experiences symptoms such as
myosis, tightening of the chest, difficulty breathing, and
a general loss of bodily functions. As symptoms pro-
gress, the victim suffers from convulsive spasms and sei-
zures, which can lead to death if left untreated [4,6-10].

Current medical countermeasures to nerve agent
intoxication include an anti-muscarinic (e.g., atropine)
that blocks excess ACh at muscarinic receptors to allevi-
ate parasympathetic overstimulation, an oxime (e.g., 2-
pyridine aldoxime methylchloride, 2-PAM) to reactivate
inhibited AChE molecules, and an anticonvulsant such
as diazepam [6-8,11]. These therapeutics increase survi-
val if administered within a short period of time follow-
ing exposure, but they may not fully prevent
neurological damage [2,6,10,12-14]. Previous studies
have shown that the development of long-lasting seizure
activity following nerve agent exposure is highly corre-
lated with the occurrence of brain damage [6,15]. Survi-
vors of nerve agent poisoning can experience long-term
neurological and behavioral outcomes months or years
following exposure [2]. Previous findings of Scremin et
al. [16] revealed that sarin-exposed rats showed beha-
vioral abnormalities up to 16 weeks post-exposure. To
date, most of our understanding on this issue comes
from studies performed on survivors of the Tokyo sub-
way attack, and most of these findings encompass only
the psychiatric sequelae due to the high prevalence of
post-traumatic stress disorder [3]. More recently, Loh
and colleagues [5] reported on the long-term cognitive
sequelae of a soldier exposed to sarin gas by means of
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an improvised explosive device (IED) while he was
deployed to Iraq in 2004. Testing performed ten months
following exposure revealed that the victim suffered
from reduced information processing speed, poor
focused attention, and difficulty in motor coordination.
Despite these studies, the long-term neurologic sequelae
of nerve agent exposure are still unclear. Therefore, the
molecular effects and biological pathways involved in
nerve agent-induced neurodegeneration need to be
examined to determine drug treatments that would be
effective when administered after the onset of seizures
and secondary responses that lead to brain injury.

Gene expression profiling is an effective approach for
elucidating chemical toxicant mechanisms of action
[17,18]. Oligonucleotide microarrays are commonly used
to simultaneously measure the mRNA levels of thou-
sands of genes in a cell and are capable of detecting
even subtle changes in gene expression. Gene expression
profiling has been successfully used to investigate the
mechanisms of toxicity and resulting effects of various
CWAs [19-24].

We performed gene expression profiling of the piri-
form cortex, one of the regions in the central nervous
system to show massive early-onset tissue pathology
from nerve agent-induced seizures [10,13,25], following
sarin exposure in a rat model to identify the molecular
effects involved in nerve agent-induced neurodegenera-
tion. In the present manuscript, we have focused on the
transcriptional responses observed in sarin-exposed seiz-
ing animals. The gene expression alterations seen in
sarin-exposed non-seizing animals will be the focus of a
future manuscript. Consistent with previous studies,
gene ontology analysis revealed a strong inflammatory
response following nerve agent-induced seizure onset
[22-24,26-31]. Therefore, we have identified pro-inflam-
matory cytokines as potential molecular targets for the
development of effective neuroprotectants following
nerve agent exposure.

Methods

Sarin exposure

Male Sprague-Dawley rats (350-500 g) were obtained
from Charles River Laboratories (Wilmington, MA).
They were housed in a temperature-controlled room
with a 12-h light/12-h dark cycle and given food and
water ad libitum. The research for this study was con-
ducted at the United States Army Medical Research
Institute of Chemical Defense (USAMRICD; Aberdeen
Proving Ground, MD), which is fully accredited by the
Association for Assessment and Accreditation of
Laboratory Animal Care, International. All of the animal
procedures were approved by the Institute Animal Care
and Use Committee at USAMRICD and conducted in
accordance with the principles stated in the Guide for
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the Care and Use of Laboratory Animals (National
Research Council, 1996) and the Animal Welfare Act of
1966 (P.L. 89-544), as amended.

PhysioTel™ F40-EET transmitters (Data Sciences
International, St. Paul, MN) were surgically implanted
into the animals to record bi-hemispheric cortical elec-
troencephalogram (EEG) activity, body temperature, and
gross motor activity throughout the study. After a two-
week recovery period, the animals were challenged with
1 x LDsq sarin (108 pg/kg, sc) that was obtained and
diluted in sterile saline at USAMRICD. One minute
after seizure onset, animals were treated with atropine
sulfate (2 mg/kg; Sigma-Aldrich, St. Louis, MO) and 2-
PAM (25 mg/kg; Sigma-Aldrich), both administered in a
single injection (im). Thirty minutes later, animals were
given the anticonvulsant diazepam (10 mg/kg, sc; TW
Medical Veterinary Supply, Austin, TX). Control ani-
mals received an equivalent volume of vehicle (saline),
atropine sulfate, 2-PAM, and diazepam at time points
corresponding to the injections administered to sarin-
exposed animals. Approximately 50% of the animals
challenged with sarin did not produce seizure activity
following exposure. Drug treatments were not given to
these sarin-exposed non-seizure animals or their
matched controls. Naive animals received no injections.

Behavioral observations were documented for each
animal following exposure and placed in one of three
categories (mild, moderate, or severe). The total was
then calculated and graphed using the total number of
toxic signs listed in the moderate (e.g., loss of posture,
excessive salivation and/or lacrimation, and body tre-
mors) and severe (e.g., complete loss of posture, clonic-
tonic convulsions, and gasping) categories. These beha-
vioral observations corresponded with the five stages of
behavioral seizure intensity, which were rated using a
modified Racine scale score [32]: stage 0 = baseline
behaviors, including resting, grooming, chewing, and
sleeping; stage 1 = inactivity, unusual posture, piloerec-
tion, frozen posture, clumsy motion, and excessive
grooming or chewing; stage 2 = oral tonus, head bobs,
and body tremors; stage 3 = forelimb myoclonus, pros-
trate body extension, and salivation or lacrimation; stage
4 = loss of posture, whole body tremors, rigidity, body
jerks, and forelimb myoclonus followed by rearing; and
stage 5 = complete loss of posture, falling or generalized
tonic-clonic convulsions, and gasping. Statistical signifi-
cance between sarin-exposed seizing animals and their
controls was calculated using Student’s t-test.

A total of 67 animals were euthanized by decapitation
at 0.25, 1, 3, 6, or 24 h after seizure onset. The piriform
cortex and trunk blood were immediately collected from
each animal at the appropriate time point. Three ani-
mals were used for each experimental group (naive,
sarin-exposed non-seizure, non-seizure control [saline],
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sarin-exposed seizure, and seizure control [saline]) at
each time point, with the exception of 1-h seizure con-
trol, 3-h sarin-exposed seizure, 24-h sarin-exposed non-
seizure, and 24-h sarin-exposed seizure (n = 4). Each tis-
sue was immediately snap-frozen in liquid nitrogen and
stored at -80°C until use. The blood samples were cen-
trifuged and erythrocyte AChE activity was determined
according to a modified method by Ellman et al. [33]
using acetylcholine as a substrate. Statistical significance
between sarin-exposed seizing animals and their con-
trols was calculated using Student’s ¢-test with a sample
size of n = 2 for 1-h sarin-exposed seizing, 3-h control
and sarin-exposed seizing, and 6-h control animals. The
sample size was n = 3 for 0.25-h control and sarin-
exposed seizing, 1-h control, 6-h sarin-exposed seizing,
and 24-h control animals. There was a sample size of u
= 4 for 24-h sarin-exposed seizing animals. The deter-
mined enzymatic activity was expressed as units per
milliliter (U/ml) blood.

Sample preparation for microarray hybridization

Tissues were homogenized in RNeasy lysis buffer
(QIAGEN, Valencia, CA) for three seconds at 5,000
rpm and ramped to 17,000 rpm for 30 sec using an
Omni Programmable Digital Homogenizer (Omni
International, Kennesaw, GA). Each homogenate was
subsequently centrifuged for 10 min at 16,110 x g at
room temperature, and the supernatant was transferred
to a new microcentrifuge tube. Total RNA was then
extracted and DNase I-treated using the RNeasy Mini
Kit and RNase-Free DNase Set (QIAGEN) according to
the manufacturer’s protocol. The quantity and quality
of the RNA was determined with a NanoDrop ND-
1000 UV-vis spectrophotometer (Thermo Scientific,
Wilmington, DE) and an Agilent Bioanalyzer (Agilent
Technologies, Santa Clara, CA) throughout sample
processing. Total RNA was processed for hybridization
to GeneChip® Rat Genome 230 2.0 oligonucleotide
arrays (Affymetrix, Inc., Santa Clara, CA) using the
BioArray Single-Round RNA Amplification and Biotin
Labeling System (Enzo Life Sciences, Inc., Farmingdale,
NY) as previously described [20]. In brief, 1 ug of total
RNA was used to generate first strand cDNA by using
a T7-linked oligo(dT) primer. After second strand
synthesis, in vitro transcription was performed with
biotinylated UTP and CTP for cRNA amplification.
Biotinylated target cRNA generated from each of the
67 samples (3 naive, 16 sarin-exposed non-seizure, 15
non-seizure control, 17 sarin-exposed seizure, and 16
seizure control) was processed according to the manu-
facturer’s protocol using an Affymetrix GeneChip
Instrument System http://affymetrix.com/support/tech-
nical/manual/expression_ manual.affx as previously
described [20].
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All microarray experiments were performed to comply
with Minimal Information About a Microarray Experi-
ment (MIAME) protocols and details can be found at
the Gene Expression Omnibus (GEO) accessible through
GEO Series accession number GSE28435. The data dis-
cussed in this publication have been deposited in the
National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/) and are accessible through GEO Series acces-
sion number GSE28435.

Microarray data analysis

Raw signal intensities from each GeneChip® were
imported into Partek Genomics Suite v6.4 (Partek, Inc.,
St. Louis, MO) and normalized using the robust multi-
array averaging (RMA) algorithm [34]. Normalized data
were analyzed by principal component analysis (PCA)
[35] to identify patterns in the dataset and highlight
similarities and differences among the 67 samples. The
major sources of variability identified among the sarin-
exposed seizing animals and their matched controls
were used as grouping variables for analysis of variance
(ANOVA). The calculated p-value and geometric fold
change for each probeset identifier were imported into
Ingenuity Pathways Analysis (IPA; Ingenuity® Systems,
http://www.ingenuity.com) to identify the biological
functions, canonical pathways, and networks of genes
significantly affected by sarin exposure. Biological func-
tions are categories into which genes are classified based
on their cellular or physiological role in a healthy or dis-
eased organism. Genes may be classified into more than
one biological function. A canonical pathway is a well-
established signaling or metabolic pathway that is manu-
ally curated on the basis of published literature. Canoni-
cal pathways are fixed prior to data input and do not
change upon data input. Networks are distinct from
canonical pathways in that they are built de novo from
input data based on known molecular interactions iden-
tified in the published scientific literature. To identify
canonical pathways that were most significant to the
dataset, molecules that met the designated p-value cutoff
(< 0.05) and were associated with a canonical pathway
in Ingenuity’s Knowledge Base were considered for the
analysis. The significance of the association between the
dataset and the canonical pathway was measured in two
ways: 1) A ratio of the number of molecules from the
data set that mapped to the pathway divided by the
total number of molecules that mapped to the canonical
pathway was displayed. 2) Fisher’s exact test was used to
calculate a p-value determining the probability that the
association between the genes in the dataset and the
canonical pathway was explained by chance alone. To
determine networks of genes significantly affected by
sarin exposure, molecules were overlaid onto a global

Page 4 of 21

molecular network developed from information con-
tained in Ingenuity’s Knowledge Base. Networks of
molecules were then algorithmically generated based on
their connectivity. The functional analysis of a network
identified the biological functions and/or diseases that
were most significant to the molecules in the network.
The network molecules associated with biological func-
tions and/or diseases in Ingenuity’s Knowledge Base
were considered for the analysis. Right-tailed Fisher’s
exact test was used to calculate a p-value determining
the probability that each biological function and/or dis-
ease assigned to that network is due to chance alone.

Multiplexed RT-PCR

The GenomeLab Gene Expression Profiler (GeXP; Beck-
man Coulter, Inc., Brea, CA) genetic analysis system was
used to measure the expression levels of 21 differentially
expressed cytokines or chemokines (see Additional File
1) by multiplexed RT-PCR to validate the microarray
data. Primers were designed using the eXpress Designer
module of the GenomeLab eXpress Profiler software,
with each primer consisting of 20 nucleotides of gene-
specific sequence as well as a universal primer sequence.
RT-PCR product sizes ranged from 151 to 351 nt with a
7-nt minimum separation size between each fragment
(see Additional File 1). The custom multiplexed panel
also contained glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH) for normalization and an internal control
gene (kanamycin resistance, Kan").

RNA samples used in the microarray experiment and
the GenomeLab GeXP Start Kit (Beckman Coulter, Inc.)
were used for the RT-PCR reactions according to the
manufacturer’s protocol. The custom multiplex was first
optimized by reverse primer dilution to attenuate the
gene signals that were close to or above the linear detec-
tion limit of the GeXP system detector (130,000 RFU in
raw data or 120,000 RFU in analyzed data) and to bal-
ance the signal of each peak within the multiplex reac-
tion. The final concentrations of the reverse primers
within the multiplex are shown in Additional File 2.
Fifty nanograms of total RNA was reverse transcribed
with the optimized reverse primer multiplex. Subse-
quently, 9.3 pul of cDNA from each RT reaction was
transferred to the PCR reaction mix containing 20 nM
of the forward primer set multiplex. All experiments
included “no template” (i.e. without RNA) and “no
enzyme” (i.e. without reverse transcriptase) negative
controls to confirm the absence of peaks at the expected
target sizes.

The fluorescently-labeled PCR products were diluted
1:20 in 10 mM Tris-HCI (pH 8), and 1 pl of each dilu-
tion was added to 38.5 pl sample loading solution along
with 0.5 pl DNA size standard-400 (GenomeLab GeXP
Start Kit). The GeXP system was then used to separate
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the amplified PCR products based on size by capillary
gel electrophoresis and to measure their fluorescent dye
signal strength in arbitrary units (A.U.) of optical fluor-
escence, which is the fluorescent signal minus back-
ground. The multiplexed RT-PCR data were initially
analyzed using the Fragment Analysis module of the
GenomeLab GeXP system software, followed by the
eXpress Analysis module of the eXpress Profiler soft-
ware. First, the length or size of the products was deter-
mined using the Fragment Analysis module. The
fragment data, peak height, and peak area information
was then imported into the analysis module of the
eXpress Profiler software where the fragments were
compared to the expected PCR product sizes to identify
each transcript.

The expression of each gene within a sample was nor-
malized to GAPDH expression to minimize inter-capil-
lary variation, and the normalized intensity of each
replicate (n > 3) was used to calculate an average inten-
sity of each sample group (i.e. control or sarin-induced
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seizure at each time point). The fold expression differ-
ence between control and sarin-induced seizure samples
was then evaluated for all genes at each time point and
compared to the fold expression changes obtained by
microarray analysis.

Results

Clinical manifestations of sarin exposure

Male Sprague-Dawley rats were challenged with 1 x
LDsq sarin or saline (as control) as described under
Materials and Methods (Figure 1A). EEG monitoring
showed that seizures were induced in approximately
50% of the sarin-exposed animals, with a mean latency
of 10.2 min (EEG example shown in Figure 1B). Beha-
vioral seizure intensity was scored using a modified
Racine scale [32]. The amount of moderate and severe
toxic signs exhibited by sarin-exposed seizing animals
was significantly greater (p < 0.0001) than their controls
(Figure 1C), with the control animals having an average
toxic signs score of 0.08 and the seizing animals having
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Figure 1 Sarin exposure model and clinical manifestations. (A) PhysioTel™ F40-EET transmitters were implanted into male Sprague-Dawley
rats to monitor EEG activity, body temperature, and gross motor activity. After a two-week recovery period, animals were challenged with 1 X
LDsq sarin, using saline as a vehicle. One minute post-seizure onset, animals were treated with 2 mg/kg atropine sulfate and 25 mg/kg 2-PAM
(im). Thirty minutes later, animals were given 10 mg/kg diazepam (sc). Control animals received an equivalent volume of vehicle, atropine, 2-
PAM, and diazepam. Drug treatments were not given to sarin-exposed non-seizure animals or their matched controls. The piriform cortex was
extracted at 0.25, 1, 3, 6, and 24 h post-seizure onset, and at least three biological replicates were used per time point. (B) The EEG shows
seizure activity following sarin exposure. It illustrates baseline EEG, seizure activity shortly after exposure, continued seizure activity 1 h after
diazepam treatment, and subsiding seizure activity 24 h after sarin exposure. (C) The severity of toxic signs exhibited in seizing animals was
significantly greater (p < 0.0001) than in controls. The graph indicates the total number of toxic signs listed in the moderate and severe
categories. The control animals had an average toxic signs score of 0.08, and the seizing animals had an average score of 10.88. (D) The Ellman
assay was used to measure the AChE activity for sarin-exposed seizing animals and their matched controls post-exposure. AChE activity was
inhibited by 0.25 h post-seizure onset compared to control and continued to decrease over time until increasing slightly at 24 h. Statistically
significant differences in AChE activity were seen at 6 h (p = 0.0007) and 24 h (p = 0.0168) post-seizure onset. The enzymatic activity at 0.25, 1,
and 3 h was not significantly different, which is likely due to smaller sample sizes at 1 and 3 h.
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an average score of 10.88. Also, AChE activity was
inhibited to a greater extent in sarin-exposed seizing
animals than in their controls (Figure 1D). AChE activ-
ity was inhibited by 0.25 h after seizure onset compared
to control and continued to decrease over time until
increasing slightly at 24 h after seizure onset. Statisti-
cally significant differences in AChE activity were seen
at 6 h (p = 0.0007) and 24 h (p = 0.0168) after seizure
onset.

Sarin exposure induces piriform cortex gene expression
with the greatest effects in seizing animals

Total RNA was isolated from the piriform cortex and
processed for oligonucleotide microarray analysis to
determine the molecular functions and biological path-
ways involved in sarin-induced toxicity. Raw data were
normalized using the RMA algorithm [34] and analyzed
by PCA (Figure 2) [35] to reduce the complexity of the
multi-dimensional dataset. The resulting three-dimen-
sional plot identified sarin-induced seizure occurrence
and time after seizure onset (0.25, 1, 3, 6, or 24 h) as
major sources of variability within the dataset. Each
point on the PCA represents the gene expression profile
of an individual animal, and the distance between any
two points is a function of the similarity in gene expres-
sion profiles between those two samples. Therefore,
samples that are near each other in the three-dimen-
sional plot have similar gene expression profiles,
whereas those that are farther apart have dissimilar gene
expression responses to sarin-induced seizure over time.
The naive, saline-exposed controls, and sarin-exposed
non-seizing animals partitioned together within the
three-dimensional plot. However, the sarin-exposed seiz-
ing animals partitioned away from controls and clus-
tered together based on time after seizure onset, with
the 24-h seizing animals separated the furthest from
controls. This indicates that the greatest differences in
gene expression profiles exist between control and 24-h
sarin-exposed seizing animals.

Canonical pathways associated with inflammation
identified as significantly altered in piriform cortex of
sarin-exposed seizing animals

To determine the molecular effects of sarin-induced sei-
zure occurrence, the data were filtered to examine gene
changes at each time point following seizure onset (0.25,
1, 3, 6, or 24 h), and a one-way ANOVA was performed
using exposure (saline vs. sarin) as a grouping variable.
The calculated p-value and geometric fold change for
each probeset ID from the arrays were imported into
IPA to identify the biological functions and canonical
pathways most affected by sarin-induced seizure at each
time point. The top < 800 genes that met the p-value
cutoff (< 0.05) and were associated with a canonical
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Figure 2 Principal component analysis of piriform cortex
samples. PCA of gene expression profiles reveals partitioning of
piriform cortex samples based on sarin-induced seizure occurrence
and time point following seizure onset. Tissues were isolated at
0.25, 1, 3, 6, and 24 h after seizure onset and processed for
oligonucleotide microarray analysis. The raw signal intensities were
normalized using the RMA algorithm and visualized using PCA to
identify major sources of variability in the data. Each point on the
PCA represents the gene expression profile of an individual animal.
Point shape corresponds to exposure condition, point color
corresponds to the time after seizure onset at which the tissue was
collected, and point size indicates absence or occurrence of sarin-
induced seizure. The principal components in the three-dimensional
plot represent the variability in gene expression levels seen within
the dataset: PC#1 (x-axis) accounts for 21.70% of the variability in
the data; PC#2 (y-axis) represents 16.20% of the variability; and PC#3
(z-axis) represents 6.26% of the variability in gene expression levels

seen within the dataset.

pathway in the IPA Knowledge Base were considered
for each analysis. Significant changes in gene expression
were seen as early as 0.25 h after seizure onset (p <
0.05, see Additional File 3) and progressively increased
over the time course (1 h: p < 4.35 x 102, 3 h: p < 4.66
x 102, 6 h: p < 2.54 x 102, 24 h: 6.25 x 10™%; see Addi-
tional Files 4, 5, 6 and 7). Gene ontology analysis
revealed numerous biological functions and canonical
pathways that were significantly altered by sarin-induced
seizure. Canonical pathways associated with an inflam-
matory response (such as acute phase response signal-
ing; hepatic fibrosis/hepatic stellate cell activation;



Spradling et al. Journal of Neuroinflammation 2011, 8:83
http://www.jneuroinflammation.com/content/8/1/83

interleukin (IL)-10 signaling; IL-6 signaling; neurotro-
phin/tyrosine kinase receptor [TRK] signaling; peroxi-
some proliferator-activated receptor [PPAR] signaling;
role of macrophages, fibroblasts, and endothelial cells in
rheumatoid arthritis; and triggering receptor expressed
on myeloid cells 1 [TREM1] signaling) were among the
most significantly altered across the five time points
examined (Figure 3), and many of the same pro-inflam-
matory cytokines (tumor necrosis factor-a. [TNF-a], IL-
1B, IL-6) are represented in all of these pathways (as
seen in the graphical representation of the IL-6 signaling
pathway in Figure 4). Additionally, inflammatory
response was among the top 25 significantly altered bio-
logical functions for each time point (see Additional
Files 8, 9, 10,11 and 12).

Biological functions and canonical pathways affected at
0.25 h after seizure onset

A multitude of biological functions and canonical path-
ways were significantly altered as early as 0.25 h follow-
ing seizure onset. The list of biological functions varied,
with cancer, cellular development, and organ develop-
ment most significant. Cell death, cell-mediated immune
response, humoral immune response, immune cell traf-
ficking, and inflammatory response were also observed
among the 25 most significantly affected functions (see
Additional File 8). Unlike the later time points, a
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number of metabolic pathways were significantly modu-
lated immediately after sarin-induced seizure. These
included pathways involving amino acid metabolism
(selenoamino acid metabolism and D-glutamine and D-
glutamate metabolism), carbohydrate metabolism (inosi-
tol metabolism, which was the most significant path-
way), energy metabolism (nitrogen metabolism), glycan
biosynthesis and metabolism (chondroitin sulfate bio-
synthesis), and metabolism of complex lipids (phospholi-
pid degradation). In addition to these metabolic
pathways, a number of signaling pathways were modu-
lated 0.25 h after seizure onset. The two most signifi-
cantly altered signaling pathways were acute phase
response signaling and hepatic fibrosis/hepatic stellate
cell activation, both of which are involved in cytokine
signaling and inflammation, followed by tight junction
signaling, which plays a role in apoptosis signaling and
cell cycle regulation. Other significantly modulated path-
ways involved in cytokine signaling include interferon
signaling and IL-10 signaling (see Additional File 13).

Biological functions and canonical pathways affected at

1 h after seizure onset

The number of significantly modulated genes and
canonical pathways increased over time following
sarin-induced seizure. The biological functions most
affected 1 h after seizure onset were cell death, cellular
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Figure 3 Inflammatory-related pathways identified among the most significantly altered pathways in sarin-exposed seizing animals.
An ANOVA was performed to identify genes most significantly changed at each time point based on exposure (sarin vs. vehicle). The p-value
and geometric fold change for each probeset were imported into IPA to identify the biological functions and canonical pathways most affected
by sarin-induced seizure at each time point. Genes from the dataset that met the p-value cutoff and were associated with a canonical pathway
in the IPA Knowledge Base were considered for the analysis. The significance of the association between the dataset and the canonical pathway
was measured using a p-value that was calculated using Fisher's exact test to determine the probability that the association between the genes
in the dataset and the canonical pathway was explained by chance alone. The calculated p-values for each time point are displayed as colored
bars, with a threshold of 0.05 (or 1.3 when expressed as -log(p-value)) marked by an asterisk.
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Figure 4 Graphical representation of the IL-6 signaling pathway reveals significant gene expression changes following sarin-induced
seizure. Genes in the IL-6 signaling pathway at the 6 h time point for sarin-induced seizing animals are represented as nodes of various shapes
to represent the functional class of the gene product, and the biological relationship between two nodes is represented as a line. The intensity

of the node color indicates the degree of up- (red) or down- (green) regulation. Nodes shown in gray represent genes from the dataset that did
not meet the p-value cutoff, and nodes shown in white represent genes that are in IPA’'s Knowledge Base but not in the dataset.
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growth and proliferation, gene expression, and cellular
movement. As with the 0.25-h time point, inflamma-
tory-related functions were among the top 25 signifi-
cantly altered biological categories (immunological
disease, inflammatory disease, immune cell trafficking,
inflammatory response, and cell-mediated immune
response) (see Additional File 9). Unlike the 0.25-h
time point, no metabolic pathways were found to be
significantly altered at 1 h after seizure onset, but an
increasing number of signaling pathways were affected.
The most significantly altered signaling pathway was
PPAR signaling, which plays a role in nuclear receptor
signaling and has been associated with inflammation
(see Additional File 14). Among the other significant
pathways were those involved in cytokine signaling
(TREM1 signaling, IL-6 signaling, prolactin signaling,
p38 mitogen activated protein kinase [MAPK] signal-
ing, high-mobility group protein 1 [HMGBI1] signaling,
IL-10 signaling, IL-2 signaling, granulocyte-macro-
phage colony-stimulating factor [GM-CSF] signaling,
nuclear factor kappa-light-chain-enhancer of activated
B cells [NF-xB] signaling, IL-12 signaling and produc-
tion in macrophages, airway pathology in chronic
obstructive pulmonary disease, and IL-9 signaling) and
nervous system signaling (neurotrophin/TRK signaling,
cholecystokinin/gastrin-mediated signaling, circadian

rhythm signaling, and gonadotropin-releasing hormone
[GNRH] signaling) (see Additional File 14).

Biological functions and canonical pathways affected at 3
h after seizure onset

At 3 h after seizure onset, an increase in the number
and level of significance of genes and canonical path-
ways was observed. The most significant biological
functions were cellular growth and proliferation, cell
death, and embryonic development (see Additional File
10). As with the previous two time points, a number of
inflammatory functions were listed in the top 25 cate-
gories (cell-mediated immune response, immunological
disease, and inflammatory disease) (see Additional File
10). Like the 1 h time point, no metabolic pathways
were found to be significant, but the number of signifi-
cant signaling pathways increased. The most significant
pathways 3 h after seizure onset were IL-6 signaling,
TREM1 signaling, IL-10 signaling, and HMGB1 signal-
ing, which are all involved in cellular immune
responses and cytokine signaling. Among the other sig-
nificant pathways were those involved in cellular stress
and injury (ataxia telangiectasia mutated protein
[ATM] signaling, p38 MAPK signaling, endoplasmic
reticulum stress pathway, hypoxia signaling in the car-
diovascular system, and nuclear factor erythroid 2-
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related factor 2 [NRF2]-mediated oxidative stress
response) (see Additional File 15).

Biological functions and canonical pathways affected at 6
h after seizure onset

At 6 h after seizure onset, the most significant molecu-
lar functions were cell death and inflammatory
response. These were then followed by cellular growth
and proliferation, tissue development, connective tissue
development and function, and skeletal and muscular
system development and function (see Additional File
11). Three metabolic pathways were significantly
modulated at 6 h following sarin-induced seizure.
These included pathways involved in amino acid meta-
bolism (valine, leucine, and isoleucine degradation and
B-alanine metabolism) and glycan biosynthesis and
metabolism (keratan sulfate biosynthesis). The most
significant signaling pathways at 6 h after seizure onset
included many that are associated with an inflamma-
tory response and are involved in cytokine signaling.
The five most significant pathways were IL-6 signaling,
IL-10 signaling, type I diabetes mellitus signaling (an
autoimmune disease involving many of the same pro-
inflammatory cytokines seen in the other top path-
ways), acute phase response signaling, and p38 MAPK
signaling (see Additional File 16).

Biological functions and canonical pathways affected at
24 h after seizure onset

At 24 h following seizure onset, which was the latest
time point included in the study, inflammation was still
among the 25 most significant functions identified
(inflammatory response, inflammatory disease, and
immune cell trafficking). Also included in the most sig-
nificant biological functions were cellular growth and
proliferation, cellular movement, and cellular develop-
ment (see Additional File 12). Metabolic disease was
among the top 25 functions, and taurine and hypotaur-
ine metabolism was among the significant pathways. At
24 h, the most significant canonical pathways were simi-
lar to those seen at 6 h after seizure onset, with IL-6
and IL-10 signaling being the two most significant path-
ways (see Additional File 17). The third pathway identi-
fied was integrin-linked kinase (ILK) signaling, which is
involved in cellular growth, proliferation, and develop-
ment. In addition to IL-6 and IL-10 signaling, other sig-
nificant pathways involved in cellular immunity and
cytokine signaling included acute phase response signal-
ing, macrophage migration inhibitory factor (MIF) regu-
lation of innate immunity, toll-like receptor signaling,
dendritic cell maturation, and TREM1 signaling (see
Additional File 17).
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Top de Novo networks modulated in piriform cortex in
sarin-exposed seizing animals

To generate an overall view of the significant molecular
effects of sarin-induced seizure over the 24-h time
course, a two-way interaction ANOVA was performed
using exposure (saline vs. sarin) and time as factors.
Gene ontology analysis identified biological functions
associated with cellular movement, cellular growth and
proliferation, and inflammatory response as being the
most significant (see Additional File 18). Additionally,
the most significant canonical pathways were IL-6 sig-
naling, IL-10 signaling, TREM1 signaling, MIF regula-
tion of innate immunity, type I diabetes mellitus
signaling, p38 MAPK signaling, toll-like receptor signal-
ing, and acute phase response signaling (see Additional
File 19). In addition to the canonical pathways contained
in the IPA Knowledge Base, we also assessed the five de
novo networks of genes most significantly modulated by
sarin-induced seizure. In agreement with the findings
reported above, one of the most significant networks
identified was built around transforming growth factor-
B (TGF-B) as a central node and was associated with
cell-to-cell signaling and interaction, inflammatory
response, and cellular movement (Figures 5 and 6).
Another significant network was built around jun onco-
gene (JUN) as a central node and was associated with
cell death, cellular development, and cellular function
and maintenance (Figures 7 and 8). The third network
was constructed around MAPK1 and was associated
with cellular movement, cell death, and cell morphology
(Figures 9 and 10). The fourth network, built around
cyclin-dependent kinase inhibitor 1A (CDKN1A), was
associated with cellular growth and proliferation, cellular
development, and lipid metabolism (Figure 11). The fifth
network was primarily focused on brain-derived neuro-
trophic factor (BDNF) and was associated with cell-to-
cell signaling and interaction, nervous system develop-
ment and function, and cell morphology (Figure 12).

Multiplexed RT-PCR validation of microarray analysis data
The GeXP genetic analysis system was used to validate a
subset of differentially expressed genes. The capillary
electrophoresis-based system was used to separate mul-
tiplexed RT-PCR reactions to compare the expression
levels of 21 inflammatory cytokines and chemokines in
each RNA sample. The subset of genes showed relative
differences in expression level following sarin-induced
seizure that corresponded to expression changes seen in
the microarray analysis (see Additional File 20).

Using both technologies, IL-1a,, CCL4, TNF-a, and
CCL3 expression appeared to be up-regulated in all five
time points, peaking at 3 hr post-seizure onset. CCL7,
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Figure 5 Seizure-induced alteration of cell-to-cell signaling and interaction, inflammatory response, and cellular movement gene
network. A two-way ANOVA was performed to identify genes most significantly changed based on exposure (saline or sarin) and time after
seizure onset interaction. Each probeset ID and corresponding false discovery rate (FDR) corrected p-value was imported into IPA and mapped
to its corresponding gene in the IPA Knowledge Base. A p-value cutoff of 3.046 x 107 was set to limit the number of molecules considered for
the analysis and identify genes whose expression was significantly differentially regulated. Genes meeting the cutoff criteria were overlaid onto a
global molecular network developed from information within the IPA Knowledge Base, and the networks were then algorithmically generated
based on their connectivity. Graphical representation of the network reveals significant changes in gene expression due to sarin-induced seizure.
Genes are represented as nodes of various shapes to represent the functional class of the gene product, and the biological relationship between
two nodes is represented as a line. The intensity of the node color indicates the degree of differential expression.
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IL-6, and IL-183 were also up-regulated at all five time
points using both methods. CCL7 peaked at 24 h, IL-1f8
peaked at 1h and 24 h, and IL-6 peaked at 3 and 24 h.
Nampt and CCL2 were up-regulated at all time points
using both approaches, with expression peaking at 6 h
using multiplexed PCR analysis and 24 h using microar-
ray analysis. Conversely, SCG2 expression appeared to
peak at 6 h using microarray analysis, but appeared to
peak at 3 h with multiplexed PCR analysis. In both ana-
lyses, CXCL16 and IL-18 were down-regulated at 0.25 h
post-seizure onset and up-regulated throughout the
remainder of the 24 h time course. SPP1 also displayed
the same expression pattern with the exception that it
appeared to be down-regulated at 1 h using the multi-
plexed PCR method. CCL17 expression level also
increased over the 24-h time course using microarray

analysis, but there appeared to be a slight decrease in
expression at 1 h in the multiplexed PCR analysis.
SPRED2 showed the same relative pattern of expression
changes over the time course but appeared to be slightly
more down-regulated using the multiplexed PCR
method. CNTF also appeared to be more down-regu-
lated using the multiplexed PCR method and had a
slightly different pattern in expression changes over the
time course. CXCL10 was down-regulated at 0.25 and 1
h with both assays and appeared to peak in expression
at 6 h. CXCL12 and CTF1 were down-regulated at all
time points using both assays. MIF expression was also
down-regulated at all time points in microarray analysis,
but was slightly up-regulated at 1 h in the multiplexed
PCR analysis. CXCL1 displayed a different pattern of
expression between the two methods. Using microarray
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Figure 6 Seizure-induced alteration of significant genes from cell-to-cell signaling and interaction, inflammatory response, and cellular
movement gene network. The top nine genes within the network shown in Figure 5 significantly altered by sarin-induced seizure. Expression
of each gene was up-regulated after seizure onset and continued to rise over the 24-h time period. An exception to this trend was seen with
chemokine (C-C motif) ligand 3 (CCL3) and tumor necrosis factor alpha induced protein 6 (TNFAIP6), where expression modestly dropped at 6 h.
CCL3 expression continued to drop at 24 h, while TNFAIP6 expression went back up at 24 h after seizure onset.
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Figure 7 Seizure-induced alteration of cell death, cellular development, and cellular function and maintenance gene network. As
detailed in Figure 5, a two-way ANOVA was performed to identify genes most significantly changed based on exposure and time after seizure
onset. Genes meeting a p-value cutoff of 3.046 x 107 were overlaid onto a global molecular network developed from information within the
IPA Knowledge Base, and the networks were then algorithmically generated based on their connectivity. Graphical representation of the network
reveals significant changes in gene expression due to sarin-induced seizure. Genes are represented as nodes of various shapes to represent the
functional class of the gene product, and the biological relationship between two nodes is represented as a line. The intensity of the node color

indicates the degree of differential expression.

analysis, it appeared to be up-regulated in all five time
points and peaked at 3 and 24 h. With the multiplexed
PCR methodology, it showed to be slightly down-regu-
lated at 0.25 h and peaked at 6 h.

Therefore, the overall expression levels of the exam-
ined inflammatory cytokines and chemokines were in
close agreement using the two different methodologies.
The differences in expression levels can easily arise from
variation in quantitative methodology. Because these
two technologies are different, slight differences in
expression between the two methods are expected, but
overall the data between the microarray analysis and
multiplexed PCR analysis are in close agreement.

Discussion
Despite extensive efforts to prevent their use, OP nerve
agents remain a viable threat to soldiers in times of war

as well as to the civilian population in the event of a ter-
rorist attack. It is well-established that the acute toxicity
of nerve agents is the result of AChE inhibition; how-
ever, the molecular mechanisms and biological pathways
involved in the resulting neurodegeneration following
seizure onset are poorly understood. To help determine
these molecular events, animals were challenged with a
1 x LD5q dose of sarin, and microarray analysis was
used to identify gene expression changes in the rat piri-
form cortex over a 24-h time period following seizure
onset. Using our exposure model, roughly 50% of the
sarin-exposed animals developed seizure activity with a
mean latency of 10.2 min, as indicated by behavioral
assessment and electrocortical activity. In this study, we
analyzed gene expression changes in the piriform cortex
of seizing animals because it has been identified as one
of the regions in the central nervous system to show
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Figure 8 Seizure-induced alteration of significant genes from cell death, cellular development, and cellular function and maintenance
gene network. The top ten genes within the network shown in Figure 7 significantly altered by sarin-induced seizure. Expression of CD14
molecule, signal transducer and activator of transcription 3 (STAT3), mitogen activated protein kinase kinase 3 (MAP2K3), and lipopolysaccharide
binding protein (LBP) was up-regulated at 1, 3, 3, and 6 h, respectively, after seizure onset and continued to rise over the 24-h time period. Early
growth response 4 (EGR4) expression was immediately up-regulated at 0.25 h after seizure onset, peaked at 3 h, and then decreased over the
remainder of the time course. A similar expression pattern was seen for protein phosphatase 1 regulatory (inhibitor) subunit 15A (PPP1R15A),
prostaglandin-endoperoxide synthase 2 (PTGS2), JUN oncogene (JUN), and cAMP responsive element modulator (CREM) where expression levels
peaked at 3 h, dropped slightly at 6 h, and increased at 24 h after seizure onset. CCAAT/enhancer binding protein (C/EBP) & increased from 0.25

T
" Time Post-Seizure Onset (h)

massive, early-onset tissue pathology following nerve
agent-induced seizures [10,13,25]. In agreement with
previous studies [6,15,26,28,36], we found major gene
expression profile differences correlated with seizure
induction and identified a strong inflammatory response
that could potentially lead to brain injury and cell death.

The transcriptional responses of sarin-exposed non-seiz-
ing animals in this dataset will be the focus of a future
manuscript.

Many significant molecular changes were seen at our
earliest time point of 0.25 h after seizure onset. Unlike
the later time points, a number of these changes were
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Figure 9 Seizure-induced alteration of cellular movement, cell death, and cell morphology gene network. As detailed in Figure 5, a two-
way ANOVA was performed to identify genes most significantly changed based on exposure and time after seizure onset. Genes meeting a p-
value cutoff of 3.046 x 10”7 were overlaid onto a global molecular network developed from information within the IPA Knowledge Base, and the
networks were then algorithmically generated based on their connectivity. Graphical representation of the network reveals significant changes in
gene expression due to sarin-induced seizure. Genes are represented as nodes of various shapes to represent the functional class of the gene
product, and the biological relationship between two nodes is represented as a line. The intensity of the node color indicates the degree of
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seen in metabolic pathways, such as those involved in
the metabolism of glutamate, inositol, and phospholi-
pids. The number of significantly altered genes and
canonical pathways increased over time following sei-
zure induction and appeared to represent an inflamma-
tory response, which was seen as early as 0.25 h. This is
suggested by the appearance of biological functions such
as cell-mediated immune response (0.25 h, 1 h, 3 h, 6
h), immune cell trafficking (0.25 h, 1 h, 6 h, 24 h),
inflammatory response (0.25 h, 1 h, 6 h, 24 h), and
immunological disease (1 h, 3 h, 24 h) among the 25
biological functions most significantly altered following
sarin-induced seizure. Further support of this statement
is provided by the number of inflammatory-related path-
ways that were significantly altered at each time point,
such as IL-10 signaling (0.25-24 h), PPAR signaling
(0.25-24 h), IL-6 signaling (1-24 h), and TREMI1

signaling (1-24 h). Thus, even at our latest time point of
24 h, inflammatory functions and pathways were still
significantly altered by sarin-induced seizure.

In addition to our analysis of molecular effects at each
time point, we also performed a two-way interaction
ANOVA using exposure (saline vs. sarin) and time to
obtain an overall view of significant molecular effects
resulting from sarin-induced seizure during the 24-h
time course. In agreement with the analyses performed
at each individual time point, we identified biological
functions associated with an inflammatory response
(e.g., inflammatory response, inflammatory disease,
immune cell trafficking, and immunological disease)
among the most significant responses. Additionally, the
most significant canonical pathways identified were all
related to an inflammatory response. These included IL-
6 signaling, IL-10 signaling, TREM1 signaling, MIF
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Figure 10 Seizure-induced alteration of significant genes from cellular movement, cell death, and cell morphology gene network. The
top eight genes within the network shown in Figure 9 significantly altered by sarin-induced seizure. Interleukin 1 receptor type Il (IL1R2),
glycoprotein (transmembrane) NMB (GPNMB), tubulin B6 (TUBB6), heme oxygenase (decycling) 1 (HMOX1), and lamin A (LMNA) expression
increased over the 24-h time course. GTP binding protein (gene overexpressed in skeletal muscle) (GEM) increased from 0.25 to 3 h after seizure
onset, decreased at 6 h, and increased again at 24 h. The expression level of emerin (EMD) peaked at 3 and 6 h after seizure onset and dropped
at 24 h. CASP8 and FADD-like apoptosis regulator (CFLAR) had a modest decrease in expression at 1 h after seizure onset and then increased in
expression over the remainder of the time course.
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Figure 11 Seizure-induced alteration of cellular growth and proliferation, cellular development, and lipid metabolism gene network.
As detailed in Figure 5, a two-way ANOVA was performed to identify genes most significantly changed based on exposure and time after
seizure onset. Genes meeting a p-value cutoff of 3.046 x 107 were overlaid onto a global molecular network developed from information within
the IPA Knowledge Base, and the networks were then algorithmically generated based on their connectivity. (A) Graphical representation of the
network reveals significant changes in gene expression due to sarin-induced seizure. Genes are represented as nodes of various shapes to
represent the functional class of the gene product, and the biological relationship between two nodes is represented as a line. The intensity of
the node color indicates the degree of differential expression. (B) Top four genes within network significantly altered by sarin-induced seizure.
The expression levels of thyrotropin releasing hormone (TRH), cardiotrophin-like cytokine factor 1 (CLCF1), and myeloid differentiation primary
response gene 88 (MYD88) increased during the time period examined with peak expression at 24 h after seizure onset. Metallothionein 2A
(labeled MT1TE in IPA network) expression peaked at 6 h after seizure onset and dropped at 24 h in both the control and sarin-exposed animals.

regulation of innate immunity, type I diabetes mellitus
signaling, p38 MAPK signaling, toll-like receptor signal-
ing, and acute phase response signaling. In our assess-
ment of the five de novo networks of genes most
significantly modulated by sarin-induced seizure over
the 24-h time course, we identified those associated
with cell-to-cell signaling and interaction, inflammatory

response, cellular movement, cell death, cellular devel-
opment, cellular function and maintenance, cell mor-
phology, cellular growth and proliferation, lipid
metabolism, and nervous system development and
function.

The findings presented in this study support the tem-
poral model proposed by McDonough and Shih [6] that
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Figure 12 Seizure-induced alteration of cell-to-cell signalling/interaction, nervous system development/function, and cell morphology
gene network. As detailed in Figure 5, a two-way ANOVA was performed to identify genes most significantly changed based on exposure and
time after seizure onset. Genes meeting a p-value cutoff of 3.046 x 107 were overlaid onto a global molecular network developed from
information within the IPA Knowledge Base, and the networks were then algorithmically generated based on their connectivity. (A) Graphical
representation of the network reveals significant changes in gene expression due to sarin-induced seizure. Genes are represented as nodes of
various shapes to represent the functional class of the gene product, and the biological relationship between two nodes is represented as a line.
The intensity of the node color indicates the degree of differential expression. (B) Top three genes within network significantly altered by sarin-
induced seizure. Moesin (MSN) and leucine rich repeat (in FLII) interacting protein 1 (LRRFIP1) expression increased over the time course with
peak expression at 24 h after seizure onset, while brain derived neurotophic factor (BDNF) expression peaked at 3 h after seizure onset and

dropped slightly at 6 and 24 h.
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links nerve agent-induced seizures to resulting neuro-
pathology. In this three-phase model, seizure initiation
is a cholinergic phenomenon that lasts from the time of
exposure to approximately 5 min after seizure onset. It
has been reported that a convulsant dose of soman
immediately inhibits brain cholinesterase with maximum
inhibition within 10 min and a large increase in ACh
concentration at the time of seizure initiation. Further-
more, previous studies have shown an immediate induc-
tion of AChE mRNA expression levels in the rat brain
following sarin exposure [37,38]. If seizures are not
immediately stopped, a transition phase occurs 5-40 min
post-exposure where other neurotransmitter systems are
perturbed. During this phase, the level of excitatory
amino acids (EAAs), such as glutamate, increases and
potentiates seizure activity [6]. Our findings at 0.25 h
after seizure onset support this transition phase of the
model. D-glutamine and D-glutamate metabolism and
glutamate receptor signaling were two of the canonical
pathways significantly altered immediately after seizure
onset. Previous studies have shown an increase in cho-
line (Ch), a precursor for ACh, 15-30 min after nerve
agent exposure [39], a time in which seizure activity has
already been initiated, due to increased hydrolysis of
phospholipids [40], and is supported by the presence of
phospholipid degradation among the significant path-
ways at this early time point. The most significantly
altered pathway at 0.25 h was inositol metabolism. Ino-
sitol works closely with Ch as a primary component of
cell membranes. It is necessary for normal nerve and
brain function as it is required for proper action of sev-
eral neurotransmitters, such as ACh and serotonin. Stu-
dies have shown that membrane phosphoinositide (PI) is
hydrolyzed following the activation of neurotransmitter
receptors, such as N-methyl-D-aspartate (NMDA), to
yield inositol 1,4,5-triphosphate (IP3), a second messen-
ger that transmits signals from the receptor into the cell
by releasing calcium from non-mitochondrial intracellu-
lar stores [6,8,41]. This leads to the last phase of the
model, which is predominantly a noncholinergic phe-
nomenon starting approximately 40 min after seizure
onset with the presence of prolonged epileptiform activ-
ity. It is proposed that this excess influx of calcium is
the ultimate cause of neuropathology following nerve
agent exposure as it can hyperactivate enzymes such as
lipases, proteases, endonucleases, kinases, or phospha-
tases that can cause damage to cell membranes, cytoske-
leton, or organelle structure and function [41,42].

Since the development of the model proposed by Shih
and McDonough, many studies have shown that there is
also an increase in pro-inflammatory mRNA and protein
expression following nerve agent exposure that lasts
hours-to-days after exposure [24,27,29-31]. Furthermore,
there has been increasing evidence over the past several
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years implicating inflammatory reactions in the patho-
genesis of several neurodegenerative disorders, such as
Alzheimer’s disease, Parkinson’s disease, multiple sclero-
sis, and epilepsy [43,44]. Studies using various seizure
models have shown an increase in cytokine mRNA and
protein expression levels within 30 min following seizure
induction in brain regions involved in seizure onset and
spread [45-47]. Therefore, it is likely that this late phase
of the model involves neuroinflammatory processes that
lead to neuropathology following nerve agent exposure.

Pro-inflammatory cytokines, such as IL-1f, IL-6, and
TNEF-a, are expressed at very low levels in healthy brain
tissue but are rapidly induced following insult. In our
study, we observed a significant increase in pro-inflam-
matory gene expression as early as 0.25 h following
sarin-induced seizure onset, and this inflammatory
response was still present at our latest observed time
point of 24 h. In support of this finding, Damodaran et
al. [22,23] and Chapman et al. [29] also observed an
increase in cytokine expression following sarin-induced
seizure activity. Damodaran et al. [22,23] used microar-
ray analysis to study gene expression profiles 0.25 h
after sarin exposure. As with our study, they reported
numerous changes in gene expression profiles immedi-
ately following sarin exposure with cytokines being
among the significantly altered signal transduction path-
ways. Chapman and colleagues [29] used midazolam to
control seizure duration and monitored protein expres-
sion levels of IL-1B, IL-6, TNF-a, and prostaglandin E2
(PGE?2) in the hippocampus and cortex at 2, 4, 6, 8, 24,
48, and 144 h and 30 days following 5 or 30 min of sei-
zure activity. They observed a significant increase in
cytokine expression starting at their earliest time point
of 2 h and peaking at 2-24 hr following sarin, with the
greatest increase in animals subject to 30 min of seizure
activity.

Further support of our findings is provided by studies
that show a neuroinflammatory response to soman.
Svensson et al. [26,28] have previously shown increases
in IL-18 mRNA and protein levels following soman
exposure. In addition, Dhote et al. [30] and Williams et
al. [27] used quantitative RT-PCR to analyze the neu-
roinflammatory gene response following a convulsant
dose of soman (1.6 x LDs). Dhote et al. [30] showed an
increase of IL-1B, TNF-a, IL-6, inter-cellular adhesion
molecule-1 (ICAM-1), and suppressor of cytokine sig-
naling (SOCS) 3 mRNA in the whole cortex at 0.50, 1,
2, 6, 24, 48, and 168 h following soman exposure, which
confirmed the earlier findings of Williams et al. [27]
where they observed an initial up-regulation of TNF-a
mRNA at 2 h post-exposure followed by an increase in
IL-1B and IL-6 mRNAs 6 h later. Johnson and Kan [31]
have recently quantified the protein levels of these cyto-
kines in vulnerable brain regions following soman-
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induced seizure onset. They reported a significant
increase in IL-1P, IL-6, and TNF-a protein levels
between 10-18 hrs after the mRNA peak expression
levels. Dillman et al. [24] used oligonucleotide arrays to
analyze gene expression profiles of rat hippocampi at 1,
3, 6,12, 24, 48, 72, 96, and 168 h following exposure to
a convulsant dose of soman. In agreement with our
findings, they observed an increasing alteration in gene
expression profiles over the first 24 h following soman
exposure. Within this time frame, they identified a
strong inflammatory response with the presence of
immunological and inflammatory disease among the
most significant biological processes altered, and the
most significant canonical signaling pathways including
p38 MAPK, toll-like receptor, IL-6, and IL-10. During
the later phase of their time course, they observed a
shift in expression that resembled an injury response
(24-96 h), which was subsequently followed by a recov-
ery phase at their latest time point of 168 h. The simila-
rities during the first 24 of our study and the study
done by Dillman and colleagues [24] lead us to believe
that we would also observe a similar shift in gene
expression that would involve molecular processes and
pathways involved in an injury and recovery phase.
However, further studies analyzing gene expression pro-
files over a longer time period are needed to confirm
this same mechanism of action following sarin-induced
seizure. Angoa-Pérez and colleagues [11] recently stu-
died the effects of soman on the expression of cyclooxy-
genase-2 (COX-2), which is the initial enzyme in the
biosynthetic pathway of pro-inflammatory prostaglan-
dins (PGEs) and a factor that has been implicated in sei-
zure initiation and propagation. They found that the
induction of COX-2 expression and subsequent produc-
tion of PGEs correlated with seizure intensity in the rat
brain from 4 h to 7 d, suggesting that these molecules
could play a role in neuronal degeneration well after the
cholinergic and glutamatergic response. Angoa-Pérez
and colleagues hypothesize that seizures occurring in
response to a PGE overload would likely not respond to
the standard treatment of anticholinergics and benzodia-
zepines, indicating that other therapeutics, such as
COX-2 inhibitors, should be added to prevent or mini-
mize neuropathology that occurs in the later phase of
the McDonough and Shih model.

Conclusions

This analysis of gene expression profiles following sarin-
induced seizure supports previous findings of mRNA
and protein alterations following OP nerve agent intoxi-
cation. It also provides further evidence for the presence
of non-cholinergic and non-glutamatergic systems dur-
ing the late phase response to nerve agents that was
proposed by McDonough and Shih in 1997 [6]. In
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addition, previous studies using AChE knockout mice
have further proved the presence of non-AChE targets
for OP nerve agents [48]. The rapid and persistent
alteration of pro-inflammatory cytokines seen in this
study as well as previous studies strongly suggests that
they may play a causal role in long-term pathological
changes following exposure to OP nerve agents. There-
fore, antagonism of pro-inflammatory molecules, as well
as their receptors and signaling pathways, may represent
a new approach for the development of additional thera-
pies to better protect the brain against seizure-induced
damage. Several seizure-inducing sites have been identi-
fied within the piriform cortex [10,13,25], so it seems
logical to focus on the molecular alterations in this
brain region to help identify these potential molecular
targets. Because current countermeasures may not fully
prevent neurological damage, this type of in-depth ana-
lysis is critical to examine the molecular effects follow-
ing nerve agent exposure and identify therapeutics that
can reduce or block the cascade of secondary events
that lead to neuropathology and associated functional
impairments. Furthermore, the identification of effica-
cious drug treatments that reduce pathology in our
nerve agent model may have implications for potential
therapies in epilepsy and other neurodegenerative disor-
ders such as Alzheimer’s disease, Huntington’s disease,
and Parkinson’s disease.

Additional material

Additional file 1: Gene symbol, PCR product size, and primer
sequences used in multiplex RT-PCR assays.

Additional file 2: Concentrations of reverse primers within the RT-
PCR multiplex.

Additional file 3: Top < 800 genes altered at 0.25 h post-seizure
onset (p-value cutoff < 0.05).

Additional file 4: Top < 800 genes altered at 1 h post-seizure onset
(p-value cutoff < 4.35 x 102).

Additional file 5: Top < 800 genes altered at 3 h post-seizure onset
(p-value cutoff < 4.66 x 1073).

Additional file 6: Top < 800 genes altered at 6 h post-seizure onset
(p-value cutoff < 2.54 x 107%).

Additional file 7: Top < 800 genes altered at 24 h post-seizure
onset (p-value cutoff < 6.25 x 107).

Additional file 8: Top 25 biological functions identified 0.25 h after
seizure onset in piriform cortex. The top < 800 molecules from the
dataset that met the p-value cutoff (< 0.05) and were associated with
biological functions and/or diseases in the IPA Knowledge Base were
considered for the analysis. Right-tailed Fisher's exact test was used to
calculate the p-value determining the probability that each biological
function and/or disease assigned to the dataset was due to chance
alone. The categories listed in the table refer to a high level function
within the IPA Knowledge Base. Each high level function can be further
broken down into multiple specific functions (e.g., the category
inflammatory response is comprised of individual functions such as
chemotaxis, recruitment, acute phase reaction, and phagocytosis).
Therefore, the range of significance values refers to the individual
functions contained within the category listed. The calculated p-values
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for each category are expressed as -log (p-value), so values greater than
1.3 indicate significance.

Additional file 9: Top 25 biological functions identified 1 h after
seizure onset in piriform cortex.

Additional file 10: Top 25 biological functions identified 3 h after
seizure onset in piriform cortex.

Additional file 11: Top 25 biological functions identified 6 h after
seizure onset in piriform cortex.

Additional file 12: Top 25 biological functions identified 24 h after
seizure onset in piriform cortex.

Additional file 13: Significant canonical pathways identified 0.25 h
after seizure onset in piriform cortex. The top < 800 molecules from
the dataset that met the p-value cutoff (< 0.05) and were associated
with a canonical pathway in IPA’s Knowledge Base were considered for
the analysis. The significance value for each canonical pathway was
calculated using right-tailed Fisher's exact test and is expressed as -log
(p-value), so values greater than 1.3 indicate significance.

Additional file 14: Significant canonical pathways identified 1 h
after seizure onset in piriform cortex.

Additional file 15: Significant canonical pathways identified 3 h
after seizure onset in piriform cortex.

Additional file 16: Significant canonical pathways identified 6 h
after seizure onset in piriform cortex.

Additional file 17: Significant canonical pathways identified 24 h
after seizure onset in piriform cortex.

Additional file 18: Top 25 biological functions affected in piriform
cortex from 0.25 h to 24 h after seizure onset.

Additional file 19: Significant canonical pathways affected in
piriform cortex from 0.25 h to 24 h after seizure onset.

Additional file 20: DNA microarray analysis and Multiplexed RT-PCR
show similar changes in gene expression following sarin-induced
seizure. The GeXP genetic analysis system was used to measure the
expression levels of 21 differentially expressed cytokines or chemokines
by multiplexed RT-PCR to validate the microarray data. The expression of
each gene within a sample was normalized to GAPDH expression to
minimize inter-capillary variation, and the normalized intensity of each
replicate (n > 3) was used to calculate an average intensity of each
sample group (i.e. control or sarin-induced seizure at each time point).
The fold expression difference between control and sarin-induced seizure
samples is shown for each gene at each of the five time points
examined. The fold changes in expression obtained in the microarray
analysis are shown on the left, and the fold changes in expression
obtained in the multiplexed PCR analysis are shown on the right. Genes
that were down-regulated following sarin-induced seizure are shaded in
green, and genes that were up-regulated following sarin-induced seizure
are shaded in red.
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triphosphate; PGE2: prostaglandin E2; ICAM-1: inter-cellular adhesion
molecule-1; SOCS: suppressor of cytokine signalling; COX-2: cyclooxygenase-
2; PGE: prostaglandin; CCL3: chemokine (C-C motif) ligand; TNFAIP6: tumor
necrosis factor alpha induced protein 6; SPRED2: sprouty-related, EVH1
domain containing 2; CNTF: ciliary neuronotrophic factor; SCG2:
secretogranin-2; CXCL: chemokine (C-X-C) motif ligand; SPP1: secreted
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