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Endogenous dynorphin protects against
neurotoxin-elicited nigrostriatal dopaminergic
neuron damage and motor deficits in mice
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Abstract

Background: The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain.
The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is
not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against
inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate
whether endogenous dynorphin has neuroprotective roles in vivo.

Methods: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used
neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-
deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system,
HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR).

Results: Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were
more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in
the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were
depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment
caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent
with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect
was less pronounced than that of MPTP.

Conclusions: The in vivo results presented here extend our previous in vitro findings and further indicate that
endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects.

Keywords: Parkinson’s disease, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, methamphetamine, neuroinflammation,
microglia, dynorphin, prodynorphin-deficient mice, nigrostriatal dopaminergic toxicity, behavioral deficit.

Background
Dynorphin is an endogenous opioid peptide system that is
widely distributed in various tissues. In the central ner-
vous system (CNS), the neurons projecting from the stri-
atum to the substantia nigra (SN) contain high levels of
dynorphin, which co-exists with substance P. The roles of
these two peptides in motor function regulation in the
striatonigral pathway have been studied extensively over

the past decade [1]. Dynorphin and substance P have been
shown to regulate nigrostriatal dopamine (DA) release,
motor behavior, and learning in a reciprocal manner [2-5].
Conversely, the nigrostriatal DAergic systems also serve to
up-regulate dynorphin gene expression by interacting with
D1 receptor and subsequently phosphorylating the cAMP
response elements (CRE) within the prodynorphin gene
promoter [6,7]. These earlier reports indicate an intimate
reciprocal relationship between dynorphin and substance
P in regulating DAergic neurons in the basal ganglia and
further suggest possible roles of these two peptides in
movement disorders, such as Parkinson’s disease (PD).
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Numerous studies have suggested the involvement of
dynorphin in the pathogenesis of PD and as a mechan-
ism of action of L-DOPA (L-3,4-dihydroxyphenylalanine)
therapy. Reduced mRNA levels of prodynorphin were
observed in the SN in postmortem brain specimens of
PD patients by quantitative PCR [8]. Similar findings
were also reported in animal models of PD [9]. For ex-
ample, in the 6-hydroxydopamine (6-OHDA)-induced
rat model of PD, mRNA levels of dynorphin were
decreased in the striatum as compared with controls.
Furthermore, the observed decreases in dynorphin
mRNA levels in these 6-OHDA rats returned to near
control levels after administration of levodopa (L-DOPA)
or SKF38393 (D1 DAergic receptor agonist) [9]. These
findings further suggest the possible involvement of
dynorphin in the pathogenesis of PD. Furthermore, ex-
cessive expression of opioid neuropeptides, such as
dynorphin and enkephalin, was closely associated with
L-DOPA-induced dyskinesias in DA-denervated animal
PD models [10]. In contrast, the non-selective opioid an-
tagonist naloxone attenuated L-DOPA-induced invol-
untary movements in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated common marmo-
sets [11].
Although previous studies revealed a critical role of

dynorphin in the regulation of DAergic neuronal func-
tions and involvement in the pathogenesis of PD, little is
known regarding its function in regulating DAergic
neuron survival. Our previous studies showed potent
neuroprotective effects of dynorphin in inflammation-
induced DAergic neuron toxicity. In mesencephalic
neuron-glia cultures, we demonstrated that addition of
ultra-low concentrations (10-13-10-15 M) of dynorphin pro-
tected DAergic neurons against lipopolysaccharide
(LPS)-induced neurotoxicity [12]. Both dynorphin A
(1–17) and the receptor binding ineffective [des-Tyr1]
dynorphin A (2–17) exerted equal potency, indicating
that the neuroprotective effect of dynorphin is inde-
pendent of κ-opioid receptors. Further studies showed
that dynorphin protected DAergic neurons against sub-
stance P-induced reduction of DA uptake and cell body
loss [13]. Detailed mechanistic studies revealed that
anti-inflammatory effects, such as the inhibition of
NADPH oxidase-generated superoxide and proinflam-
matory factors from microglia, mediated the neuropro-
tective effects of dynorphin [14].
The cell culture studies described above provided

strong evidence indicating a critical neuroprotective role
of dynorphin; however, there have been no reports de-
scribing the functional relevance of endogenous dynor-
phin in the pathogenesis of PD. For this purpose,
prodynorphin-deficient mice (Dyn−/−) and wild-type
mice (Dyn+/+) were treated with MPTP or metham-
phetamine (MA), two commonly used neurotoxins for

rodent PD models. Here, we report that endogenous
dynorphin deficiency exacerbates MPTP- or MA-
induced motor deficits, loss of nigrostriatal DAergic
neurons, and reduction of striatal DA level. The mech-
anism might be related to the higher degrees of microglial
activation and M1 phenotype differentiation in Dyn−/−.
Thus, our results suggest that endogenous prodynorphin
knockout adversely affects the progression of PD, support-
ing the potential neuroprotective role of endogenous
dynorphin in PD.

Methods
Reagents
We purchased MPTP, MA, DA, 3, 4-dihydroxyphenylacetic
acid (DOPAC), and homovanillic acid (HVA) from Sigma
Chemical Co. (St. Louis, MO, USA). Antibodies to tyrosine
hydroxylase and Iba-1 were obtained from Millipore
(Temecula, CA, USA) and from Wako Pure Chemical In-
dustries, Ltd. (Osaka, Japan), respectively. RNeasy Mini kits
were purchased from Qiagen (Valencia, CA, USA). The pri-
mers for RT-PCR, including Arginase1, CD206, CD16,
CD32, and CD86, were obtained from Bioneer Corporation
(Daejeon, South Korea). All other reagents were of analyt-
ical or high-performance liquid chromatography (HPLC)
grade.

Animals
All animals were treated in accordance with the National
Institutes of Health (NIH) Guide for the Humane Care
and Use of Laboratory Animals (NIH Publication No.
85–23, 1985; www.dels.nas.edu/ila). The present study
was performed in accordance with the Institute for La-
boratory Research (ILAR) guidelines for the care and
use of laboratory animals. Mice were maintained under
a 12-h light:12-h dark cycle and fed ad libitum. The
Dyn−/− mice were originally obtained by targeted dele-
tion of the coding exons of the prodynorphin gene
[15]. We used this animal model in our previous stud-
ies [16,17]. The Dyn−/− strain used in the present study
was backcrossed at least nine times to the C57BL/6 back-
ground. Prior to weaning, tail specimens were collected
from each animal, and DNA was extracted to confirm the
presence of the prodynorphin gene locus by polymerase
chain reaction (PCR) using primer pairs specific for each
genotype [15-17]. Primers to detect WT alleles at the pro-
dynorphin gene locus were 5′-CAGGACCTGGTGC
CGCCCTCAGAG-3′ and 5′-CGCTTCTGGTTGTCCC
ACTTCAGC-3′; primers specific for the deletion were
5′-ATCCAGGAAACCAGCAGCGGCTAT-3′ and 5′-
ATTCAGACACATCCCACATAAGGACA-3′. The pro-
ducts were amplified in a GeneAmp PCR System 9700
(Applied Biosystems, Foster City, CA, USA) using the fol-
lowing PCR parameters: an initial denaturation at 94°C
for 5 min, and then 30 cycles of 94°C for 30 s, 65°C
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for 30 s, 72°C for 30 s, and 72°C for 5 min, followed
by electrophoresis on 1% agarose gels with ethidium
bromide and photography under ultraviolet (UV)
light.
Because young mice (that is 8- to 10-week old ani-

mals) are known to be less sensitive to behavioral
impairments induced by dopaminergic neurotoxins (for
example, MPTP) than adult mice [18] and show spon-
taneous behavioral recovery within several days after
subchronic treatment with MPTP [18,19], we employed
6-month-old mice with a Dyn+/+ or Dyn−/− genotype to
better understand behavioral impairments induced by
both dopaminergic toxins. Under our experimental condi-
tion, spontaneous behavioral recovery was not observed
until at least 7 days after the final MPTP or MA treatment
(see Additional file 1 and Additional file 2: Figure S1).

Drugs treatment
Mice received four injections of MA (5 or 7 mg/kg, i.p.) at
2-h intervals. MPTP (15 or 20 mg/kg, i.p.) was injected
once daily for 7 consecutive days. The dose of MPTP or
MA was determined based on previous studies [20-24]
and our pilot study [25]. The mice were sacrificed 1, 3,
and 7 days after the final MA or MPTP treatment.

Locomotor activity
Locomotor activities were measured for 30 min using an
automated video-tracking system (Noldus Information
Technology, Wagenin, The Netherlands) at 7 days after
the final injection of MPTP or MA. Four test boxes
(40 × 40 × 40 cm) were operated simultaneously by an
IBM computer. Animals were studied individually during
locomotion in each test box. Animals were allowed to
acclimatize to the test box for 5 min before starting the
experiment. A printout for each session showed the pat-
tern of ambulatory movements in the test box. The dis-
tances traveled in centimeters by the animals during
horizontal locomotor activity were analyzed [26].

Rota-rod test
Rota-rod test was performed at 7 days after the final injec-
tion of MPTP or MA. The apparatus (model 7650; Ugo
Basile, Comerio, Varese, Italy) consisted of a base platform
and a rotating rod with a non-slip surface. The rod was
placed at a height of 15 cm above the base. The rod, 30 cm
in length, was divided into equal sections by six opaque
disks so that the animals would not be distracted by one
another. To assess motor performance, the mice were first
trained on the apparatus for 2 min at a constant rate of 4
rpm. The test was performed 30 min after training and an
accelerating paradigm was applied, starting from a rate of 4
rpm to maximal speed of 40 rpm. The rotation speed was
then kept constant at 40 rpm. The latency to fall was mea-
sured with a maximal cutoff time of 300 s [27].

Measurement of dopamine (DA), 3,4-
dihydroxyphenylacetic acid (DOPAC), and homovanillic
acid (HVA) level
Mice were killed by cervical dislocation and the brains
were removed. The striatum was dissected, immediately
frozen on dry ice, and stored at −70°C before assays
were performed. Tissues were weighed, ultrasonicated in
10% perchloric acid, and centrifuged at 20,000 × g for 10
min. The levels of DA and its metabolites, DOPAC and
HVA, in brain tissue extracts were determined by HPLC
coupled with an electrochemical detector as described
[28]. Supernatant aliquots (20 μL) were then injected
into an HPLC equipped with a 3 μm C18 column. The
mobile phase was comprised of 26 mL of acetonitrile, 21
mL of tetrahydrofuran, and 960 mL of 0.15 M mono-
chloroacetic acid (pH 3.0) containing 50 mg/L of EDTA
and 200 mg/mL of sodium octyl sulfate. The amounts of
DA, DOPAC, and HVA were determined by comparison
of peak areas of tissue samples with authentic standards,
and were expressed in ng/g of wet tissue.

Reverse transcription and polymerase chain reaction
(RT-PCR)
Total RNA from the striatum was isolated using an
RNeasy Mini kit (Qiagen). Reverse transcription was
performed by incubation for 1 h at 37°C in reaction mix-
tures containing AMV transcriptase and random oligo-
nucleotide primers. PCR amplification was performed
for 35 cycles of denaturation at 94°C for 1 min, anneal-
ing at 60°C for 2 min, and extension at 72°C for 1 min.
Primer sequences [29] for PCR amplification are listed
in Table 1. PCR products were separated on 2% agarose
gels containing ethidium bromide. Quantitative analysis
of RNA was performed using PhotoCaptMw computer
software (Vilber Lourmat, Marne-la-Vallée, France).

Western blot analysis
Western blotting analysis was performed as described pre-
viously [26]. Tissues were homogenized in lysis buffer

Table 1 Gene primer sequences for RT-PCR analysis

Gene Forward primer (5'-3') Reverse primer (5'-3')

Arginase 1 GAACACGGCAGTGGCT
TTAAC

TGCTTAGCTCTGTCTGC
TTTGC

CD206 TCTTTGCCTTTCCCAGTC
TCC

TGACACCCAGCGGAAT
TTC

CD16 TTTGGACACCCAGATGT
TTCAG

GTCTTCCTTGAGCACCT
GGATC

CD32 AATCCTGCCGTTCCTAC
TGATC

GTGTCACCGTGTCTTCC
TTGAG

CD86 TTGTGTGTGTTCTGGAAA
CGGAG

AACTTAGAGGCTGTGTT
GCTGGG

GAPDH ACCACAGTCCATGCCAT
CAC

TCCACCACCCTGTTGCT
GTA
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containing a 200 mM Tris–HCl (pH 6.8), 10% SDS, 5 mM
ethylene glycol tetraacetic acid (EGTA), 5 mM ethylene-
diaminetetraacetic acid (EDTA), 10% glycerol, and prote-
ase inhibitor cocktail (Sigma). Lysates were centrifuged at
13,000× g for 30 min and the supernatant fractions were
used for Western blotting analysis. Proteins (20 μg/lane)
were separated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto polyvinylidene fluoride (PVDF) mem-
branes, and the resulting blots were blocked in phosphate
buffered saline (PBS) containing 3% skim milk for 30 min.
Each blot was incubated overnight at 4°C with the primary
antibody against β-actin (1:50,000; Sigma), or TH (1:5,000;
Chemicon, Temecula, MA, USA). After washing in PBS,
membranes were incubated with HRP-conjugated second-
ary anti-rabbit IgG (1:5,000; GE Healthcare, Arlington
Heights, IL, USA), or anti-mouse IgG (1:5000; Sigma) for
2 h. Subsequent visualization was performed using the
enhanced chemiluminescence system (ECL plusW; GE
Healthcare). Relative band intensities were quantified by
PhotoCaptMw (version 10.01 for Windows; Vilber
Lourmat).

Immunohistochemistry
For immunocytochemical analysis [30], mice were per-
fused transcardially with 50 mL of ice-cold PBS (10 mL/10
g body weight) followed by 4% paraformaldehyde (20 mL/
10 g body weight). Brains were removed and stored in 4%
paraformaldehyde overnight. Sections were blocked with
PBS containing 0.3% hydrogen peroxide for 30 min and
then incubated in PBS containing 0.4% Triton X-100 and
1% normal serum for 20 min. After a 24-h incubation with
primary antibody against TH (1:500; Chemicon) or Iba-1
(1:500; Wako), sections were incubated with the biotiny-
lated secondary antibody (1:1000; Vector Laboratories,
Burlingame, CA, USA) for 1 h. The sections were
then immersed in a solution containing avidin-biotin
peroxidase complex (Vector Laboratories) for 1 h,
and 3,3'-diaminobenzidine was used as the chromo-
gen. Digital images were acquired under an Olympus
microscope (BX51; Olympus, Tokyo, Japan) using an
attached digital microscope camera (DP72; Olympus)
and an IBM PC.
The striatal densities of Iba-1 and TH immunoreactiv-

ity were measured using ImageJ version 1.44 software
(National Institutes of Health, Bethesda, MD, USA) as
described previously [31,32]. Briefly, the entire striatal
region from each section was selected as the region of
interest (ROI). Threshold values for hue (0–100), satur-
ation (0–255), and brightness (175–255 for TH; 150–
205 for Iba-1) were set in the ‘Adjust Color Threshold’
dialog box, and then the mean density was measured.
Quantification was performed from four adjacent brain

sections, spaced 120 μm apart, and was subsequently
averaged for each animal.

Stereological analysis
The total numbers of TH-immunoreactive neurons and
activated microglia were estimated using the computer-
ized optical fractionator method (Stereo Investigator ver.
7.5; MBF Bioscience, Microbrightfield, Inc., Williston,
VT, USA) as described previously [33,34]. Briefly, a 5×
objective lens was used to define the contours around
the entire region of interest, and a 100× lens was used
for assessment of TH- and Iba-1-immunoreactive cells
following a systematically random sampling scheme. Ser-
ial sections covering the rostrocaudal extent of the SN
were cut on a Microm HM440E microtome (cut thick-
ness of 30 μm and final mounted thickness of 24 μm),
and every sixth section was counted (a total of four sec-
tions) for systematic analysis of randomly placed counting
frames (size of 50× 50 μm) on a counting grid (size of
16000 μm2 area) and sampled using a 10-μm optical dis-
sector with 2-μm upper and lower guard zones. A dopa-
minergic neuron was defined as a TH-immunoreactive
cell body with a clearly visible TH-negative nucleus. The
total numbers of TH- and Iba-1-immunoreactive cells
from each animal were estimated using the serial section
manager software. One series of each animal was analyzed
for TH-IR and Iba-1-IR. The coefficient of error [35] was
calculated to determine intra-animal variation and was
less than 0.1 in all cases. For this stereological technology,
the potential sources of bias mainly include the fixation
and embedding processing protocol, immunostaining pro-
cessing, and individual cell counting [36]. We took several
precautions to minimize such influences: animal brains
were fixed using the same protocol, tissues were cryosec-
tioned using a cryostat microtome, the immunostaining
steps were performed on all of the tissue sections simul-
taneously, and cell counting was conducted in a blind
mode. Data were expressed as TH-positive cells [37,38].

Statistics
We followed statistical analyses outlined by Belin and
Everitt [39] to understand the main effects and/or inter-
actions with all appropriate values for F and P. Data
were analyzed using two-way analysis of variance
(ANOVA) with strains and doses (Figures 1, 2, and 3) or
with strains and time points (Figures 4 and 5) as
between-subjects factors. When the main effect of
strains, doses, or time points was significant, post-hoc
Tukey’s HSD test (among groups in the same strain) or
pairwise comparison using paired t-test (between two
strains for each dose or each time point) was performed.
A P value <0.05 was deemed statistically significant.
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Results
Prodynorphin deficiency potentiates MPTP- or MA-
induced behavioral impairment
To determine the roles of endogenous dynorphin in
regulating motor function, locomotor activity and rota-
rod performance [40,41] were examined in Dyn+/+ and
Dyn−/− after treatment with MPTP or MA, two widely
used neurotoxins in rodent PD models. As shown in
Figure 1, the locomotor activities in mice were signifi-
cantly and dose-dependently decreased in response to
MPTP (main effect of doses: F2,66 = 47.1, P< 0.001) or
MA (main effect of doses: F2,66 = 37.8, P< 0.001), and
the degree of impairment induced by MPTP appeared to
be more pronounced than that by MA. Compared with
Dyn+/+ mice, Dyn−/− mice exhibited hypolocomotion
after administration of MPTP (main effect of strains:
F1,66 = 5.49, P< 0.05) or MA (main effect of strains:
F1,66 = 4.92, P< 0.05) (Figure 1A and B). However, a sig-
nificant interaction between doses and strains was not
induced by MPTP (interaction of doses × strains:
F2,66 = 1.15, P> 0.05) or MA (interaction of doses ×
strains: F2,66 = 1.85, P> 0.05). Changes in rota-rod per-
formance were consistent with those in locomotor activ-
ity. The degree of impairment in rota-rod performance

in Dyn−/− mice was much more severe than that in Dyn+/+

mice (MPTP, main effect of doses: F2,66 = 57.5, P< 0.001
or strains: F1,66 = 13.4, P< 0.001; MA, main effect of
doses: F2,66 = 43.7, P< 0.001 or strains: F1,66 = 12.0,
P< 0.001) (Figure 1C and D). However, a significant inter-
action between doses and strains was not induced by
MPTP (interaction of doses × strains: F2,66 = 2.91, P> 0.05)
or MA (interaction of doses × strains: F2,66 = 1.33,
P> 0.05). There were no significant differences in loco-
motor activity or rota-rod performance between saline-
treated Dyn+/+ and Dyn−/−. These data suggested that en-
dogenous dynorphin has a protective effect against the
motor behavioral deficits induced by MPTP or MA.

Prodynorphin deficiency exacerbates MPTP- or MA-
induced DAergic neurotoxicity
To investigate whether endogenous dynorphin modu-
lates DAergic neuronal survival in vivo, brain sections of
SN and striatum from both Dyn+/+ and Dyn−/− after
MPTP or MA treatment were immunostained with an anti-
body against tyrosine hydroxylase (TH) (Figure 2A and B).
Immunocytochemical analysis revealed a dose-dependent
decrease in staining intensity of TH-positive bodies in the
SNpc and fibers in the striatum after MPTP or MA
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Figure 3 Prodynorphin deficiency enhances MPTP- or MA-induced decreases in TH expression and DA level. Dyn+/+ and Dyn−/− received
MPTP (15 or 20 mg/kg, i.p.) or MA (5 or 7 mg/kg, i.p.) as described in Figure 1. TH expression and DA and its metabolites were examined 7 days
after the last treatment with MPTP or MA. Quantification of TH expression was performed as shown in A and B. The levels of dopamine (DA; C, D) and its
metabolites, 3,4-hydroxyphenylacetic acid (DOPAC; E, F) and homovanillic acid (HVA; G, H), were determined by HPLC. The turnover rate was evaluated
using the ratio of (DOPAC+HVA)/DA (I, J). Each value is mean±S.E.M of eight mice. *P <0.05, **P< 0.01, ***P< 0.001 vs. respective saline group, #P
<0.05, ##P <0.01, ###P <0.001 vs. MPTP- or MA-treated Dyn+/+ (two-way ANOVA followed by post-hoc Tukey HSD test or pairwise comparison with paired
t-test).
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treatment as compared with saline-injected controls. Quan-
tification of TH-positive neurons and TH expression in
SNpc (MPTP, main effect of doses: F2,42 = 120, P< 0.001;
MA, main effect of doses: F2,42 = 51.8, P< 0.001) and

striatum (MPTP, main effect of doses: F2,42 = 106, P< 0.001;
MA, main effect of doses: F2,42 = 70.6, P< 0.001)
(Figure 2C-F) confirmed the histological observations. Fur-
ther analysis indicated a greater loss of dopaminergic
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neurons in Dyn−/− mice than in Dyn+/+ mice (MPTP, main
effect of strains: F1,42 = 12.5, P< 0.01 in the striatum and
F1,42 = 11.7, P< 0.01 in the SNpc; MA, main effect of
strains: F1,42 = 6.89, P< 0.05 in the striatum and F1,42 = 7.02,

P< 0.05 in the SNpc) (Figure 2C-F). However, no signifi-
cant interaction between doses and strains was induced by
MPTP (interaction of doses× strains: F2,42 = 1.87, P> 0.05
in the striatum and F2,42 = 0.907, P> 0.05 in the SNpc) or
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Figure 5 Prodynorphin gene deficiency promotes microglial differentiation into M1 type after MPTP or MA administration. Dyn+/+ and
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MA (interaction of doses × strains: F2,42 = 1.77, P> 0.05 in
the striatum and F2,42 = 1.28, P> 0.05 in the SNpc). Prody-
norphin deficiency also potentiated the MA-elicited
DAergic neurodegeneration as compared with Dyn+/+,
although compared with MPTP, MA induced less
damage on nigral TH-positive neurons. These results
suggested that the loss of endogenous prodynorphin
increases the vulnerability of DAergic neurons to
MPTP or MA insult.
To determine the differences in biochemical changes of

DAergic neurons in both Dyn+/+ and Dyn−/− mice in re-
sponse to neurotoxins, we examined TH expression and
DA and its metabolites (DOPAC and HVA) in the striatum
7 days after final MPTP or MA injection. As shown in
Figure 3, DA, DOPAC, and HVA levels were significantly
decreased in both strains of mice after MPTP treatment
(main effect of doses: F2,42 = 73.8, P< 0.001 for TH;
F2,42 = 80.2, P< 0.001 for DA; F2,42 = 37.8, P< 0.001 for
DOPAC; and F2,42 = 8.76, P< 0.001 for HVA) or MA (main
effect of doses: F2,42 = 26.0, P< 0.001 for TH; F2,42 = 44.7,
P< 0.001 for DA; F2,42 = 1.64, P> 0.05 for DOPAC; and
F2,42 = 3.82, P< 0.05 for HVA). Consistent with the loss of
TH-positive neurons after treatment with toxins (Figure 3),
TH expression (Figure 3A and B) and DA (Figure 3C and
D) showed more pronounced reductions after treatment
with MPTP (main effect of strains: F1,42 = 10.3, P< 0.01
for TH; F1,42 = 8.02, P< 0.001 for DA; F1,42 = 0.377,
P> 0.05 for DOPAC; and F1,42 = 1.00, P> 0.05 for HVA)
or MA (main effect of strains: F1,42 = 5.35, P< 0.05 for
TH; F1,42 = 11.6, P< 0.01 for DA; F1,42 = 1.51, P> 0.05 for
DOPAC; and F1,42 = 1.30, P> 0.05 for HVA) in Dyn−/−

mice than in Dyn+/+mice. The greater depletion of striatal
DA in Dyn−/− mice was accompanied by a higher DA
turnover rate, as expressed by the ratio of metabolites and
DA (main effect of doses: F2,42 = 23.0, P< 0.001 for MPTP;
F2,42 = 19.8, P< 0.001 for MA; main effect of strains:
F1,42 = 13.2, P< 0.001 for MPTP; F1,42 = 5.22, and P< 0.05
for MA) (Figure 3I and J). A significant interaction
between doses and strains was observed in several para-
meters after MPTP treatment (F2,42 = 3.94, P< 0.05 for TH;
F2,42 = 2.61, P> 0.05 for DA; F2,42 = 1.08, P> 0.05 for
DOPAC; F2,42 = 0.06, P> 0.05 for HVA; and F2,42 = 7.03,
P< 0.01 for the DA turnover rate) or MA (F2,42 = 0.487,
P> 0.05 for TH; F2,42 = 0.420, P> 0.05 for DA; F2,42 = 1.88,
P> 0.05 for DOPAC; F2,42 = 0.02, P> 0.05 for HVA; and
F2,42 = 3.97, P< 0.05 for the DA turnover rate). The higher
degree of DA depletion in Dyn−/− mice was consistent with
more severe behavioral impairment (Figure 1) elicited by
both MPTP and MA.

Prodynorphin deficiency increases MPTP- and MA-elicited
microglial activation
We reported previously that microglial activation fol-
lowed by neuronal damage (reactive microgliosis) plays

an active role in the progressive nature of PD, which fur-
ther exacerbates DAergic neuronal loss, fueling a self-
renewing cycle [42-44]. To define the role of endogenous
dynorphin in microglial activation induced by MPTP or
MA, we compared the time-dependent changes in micro-
glial morphology in the nigrostriatal area between Dyn+/+

and Dyn−/− mice (Figure 4). Because the statistical differ-
ences between the two strains in behavioral deficits and
dopaminergic impairments were more pronounced at the
higher dose of MPTP or MA (Figures 1, 2, and 3), we
selected the dose of 20 mg/kg MPTP or 7 mg/kg MA for
evaluating time-dependent changes in microglial activation
(Figure 4) and M1/M2 microglial differentiation (Figure 5)
in Dyn+/+ and Dyn−/− mice. Activation of microglia was
morphologically observed by Iba1 immunostaining at 1, 3,
and 7 days after the final injection of MPTP or MA. Al-
though resident microglia from both Dyn+/+ and Dyn−/−

show a basal level of Iba1 expression, they appeared small
and bore thin processes (Figure 4). One day after the final
injection of MPTP or MA, activated microglia character-
ized by intensified Iba1 staining and enlarged cell size, were
distributed throughout the Dyn+/+, which continued for 7
days (Figure 4A and B). Quantitative analysis of Iba1 stain-
ing in the striatum (main effect of time points: F3,56 = 24.8,
P< 0.001 for MPTP; F3,56 = 15.6, P< 0.001 for MA) and
SN (main effect of time points: F3,56 = 19.4, P< 0.001 for
MPTP; F3,56 = 12.9, P< 0.001 for MA) demonstrated a
marked increase after neurotoxin treatment (Figure 4C-F).
Interestingly, more pronounced microglial activation eli-
cited by MPTP or MA was observed in both the striatum
(main effect of strains: F1,56 = 20.3, P< 0.001 for MPTP;
F1,56 = 6.03, P< 0.05 for MA) and SN (main effect of
strains: F1,56 = 14.3, P< 0.001 for MPTP; F1,56 = 4.51,
and P< 0.05 for MA) of Dyn−/− mice, characterized by a
greater increase in Iba1 staining intensity and enlarged cell
size compared with that in Dyn+/+ mice. However, a signifi-
cant interaction between time points and strains was not
induced by MPTP (interaction of time points× strains:
F3,56 = 1.60, P> 0.05 in the striatum; F3,56 = 1.43, P> 0.05 in
the SNpc) or MA (interaction of time points× strains:
F3,56 = 0.900, P> 0.05 in the striatum; F3,56 = 1.51, P> 0.05
in the SNpc). These results suggested that prodynorphin
deficiency enhances microglial activation in the presence of
MPTP or MA-induced neuronal damage.

Prodynorphin deficiency promotes M1 microglial
differentiation
It has been suggested that macrophages/microglia play dif-
ferent roles in tissue repair or damage in response to CNS
injury. These divergent effects may be due to distinct
macrophage/microglial subsets, that is, ‘classically activated’
proinflammatory (M1) or ‘alternatively activated’ anti-
inflammatory (M2) cells. To further characterize the
enhanced microglial activation after neurotoxin treatment,
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we measured mRNA levels of M2 (arginase 1 and CD206)
(Figure 5A and C) and M1 markers (CD16, CD32, and
CD86) (Figure 5E, G, and I) in the mouse striatum 1, 3, and
7 days after the final MPTP treatment. RT-PCR analysis
revealed that MPTP time-dependently decreased the gene
expression of both arginase 1 (main effect of time points:
F3,56 = 11.1, P< 0.001) and CD206 (main effect of time
points: F3,56 = 13.1, P< 0.001), two M2 phenotype markers,
in both strains of mice (Figure 5A and C). Further analysis
showed that the decreases in expression of these two M2
genes were more pronounced (main effect of strains:
F1,56 = 9.41, P< 0.001 for arginase 1;F1,56 = 4.16, P< 0.05 for
CD206) in Dyn−/− mice than in Dyn+/+ mice (Figure 5A
and C). In contrast, the levels of expression of M1 pheno-
type markers (that is, CD16, CD32, and CD86) were mark-
edly increased in both strains of mice 1 day after the final
MPTP treatment (main effect of time points:
F3,56 = 59.1, P< 0.001 for CD16; F3,56 = 24.1, P< 0.001 for
CD32; and F3,56 = 27.3, P< 0.001 for CD86) (Figure 5E, G,
and I). Enhanced expression of M1 phenotype markers
decreased gradually after 3 and 7 days; however, the expres-
sion levels of these genes were higher (main effect of
strains: F1,56 = 8.18, P< 0.01 for CD16; F1,56 = 10.4, P< 0.01
for CD32; and F1,56 = 14.8, P< 0.001 for CD86) in Dyn−/−

mice than in Dyn+/+ mice (Figure 5E, G, and I). Prodynor-
phin deficiency also significantly reduced the levels
of arginase 1 and CD206 gene expression in MA-
treated mice compared with Dyn+/+ mice (main ef-
fect of time points: F3,56 = 9.46, P< 0.001 for arginase
1; F3,56 = 11.6, P< 0.001 for CD206; main effect of
strains: F1,56 = 10.2, P< 0.01 for arginase 1;
F1,56 = 7.35, P< 0.01 for CD206) (Figure 5B and D).
However, prodynorphin deficiency significantly
increased the gene expression levels of CD16 and
CD86, but not that of CD32 (main effect of time
points: F3,56 = 6.71, P< 0.001 for CD16; F3,56 = 50.1, P
< 0.001 for CD32; and F3,56 = 18.3, P< 0.001 for
CD86; main effect of strains: F1,56 = 12.5, P< 0.001
for CD16; F1,56 = 0.076, P> 0.05 for CD32; and
F1,56 = 6.15, P< 0.05 for CD86) (Figure 5F-J). Particularly,
CD16 gene expression showed significant interaction be-
tween time points and strains after MA treatment
(F3,56 = 3.81, P< 0.05) (Figure 5F). However, the other para-
meters showed no significant interaction between time
points and strains after MPTP (F3,56 = 1.40, P> 0.05 for
arginase 1; F3,56 = 0.726, P> 0.05 for CD206; F3,56 = 2.18,
P> 0.05 for CD16; F3,56 = 1.50, P> 0.05 for CD32; and
F3,56 = 1.29, P> 0.05 for CD86) or MA treatment
(F3,56 = 2.03, P> 0.05 for arginase 1; F3,56 = 0.267, P> 0.05
for CD206; F3,56 = 0.635, P> 0.05 for CD32; and
F3,56 = 1.70, P> 0.05 for CD86). These results suggested
that endogenous prodynorphin deficiency accelerates
microglial differentiation to the M1 phenotype after MPTP
or MA treatment.

Discussion
Using Dyn−/−, we demonstrated that endogenous prody-
norphin deficiency aggravated behavioral impairment
and DAergic neuronal loss induced by MPTP and MA.
These results are consistent with our hypothesis that en-
dogenous dynorphin plays a critical role in protecting
nigrostriatal DAergic neurons from chemical insults.
There were three major findings of this study: (1)
MPTP- and MA-elicited impairments of locomotor ac-
tivity and rota-rod performance were more pronounced
in Dyn−/− than in Dyn+/+; (2) these motor deficits were
well correlated with greater nigrostriatal DAergic neur-
onal loss in Dyn−/− than in Dyn+/+ after toxin treatment;
and (3) both toxins triggered higher degrees of microglial
activation and M1 phenotype differentiation in Dyn−/− as
compared with Dyn+/+, suggesting that overactivated
microglia and amplified proinflammatory activities
underlie the mechanisms of the exacerbated neuro-
toxic effects.
MPTP and MA are commonly used to create rodent

PD models. Both toxins specifically target the nigrostria-
tal DA pathway. At the doses used in this study, MPTP
and MA elicited both motor deficits and nigrostriatal
DAergic neuronal loss. Treatment with MA is well
known to result in terminal degeneration of dopamin-
ergic neurons in the striatum [45-47]. Additionally, we
[48] and others [49,50] have demonstrated that acute
toxic dosing of MA can induce nigral degeneration,
which is thought to parallel the pathological changes
observed in the Parkinsonian condition [48,49,51]. How-
ever, whether MA-induced nigral degeneration is due to
retrograde degeneration or direct neurotoxic effects on
nigral cell bodies remains to be determined.
The overall results showed a high degree of consistency

indicating that the behavioral motor deficits and DAergic
neuronal losses are more pronounced in Dyn−/− than in
Dyn+/+ after neurotoxin treatment. In addition, the motor
deficits were well-correlated with the impairment of nigros-
triatal DAergic function as indicated by the greater loss of
nigral DAergic neurons and striatal DA levels in Dyn−/− as
compared with Dyn+/+ mice (Figures 2 and 3). Taken to-
gether, the results of this study provided clear evidence that
endogenous dynorphin plays a critical role in protection of
nigrostriatal DAergic neurons from chemical insults.
Several studies have suggested that MA-induced

hyperthermia mediates its neurotoxicity [52,53]. How-
ever, other reports have indicated that hyperthermia per
se may not fully explain the MA-induced neurotoxicity,
and that other factors may be involved in its neurotoxic
effects [54-56]. For instance, pretreatment with reser-
pine, a drug known to produce hypothermia, did not
prevent MA-induced neurotoxicity [54,55]. In the
present study, we failed to obtain any significant differ-
ence in MA-induced hyperthermic response between
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Dyn−/− and Dyn+/+ mice (see Additional file 1 as
Additional file 2: Figure S2), suggesting that the
dynorphin-mediated neuroprotective mechanism in re-
sponse to MA toxicity may not require thermal regulation.
The possible mechanism underlying the neuroprotec-

tive effect of endogenous dynorphin was also examined
in this study. Based on the results of our previous cell
culture studies, we hypothesized that endogenous
dynorphin-mediated neuroprotection is mediated mainly
via its potent anti-inflammatory properties. In this
in vivo study, we examined the activation and phenotype
shifting of microglia after MPTP or MA treatment. Al-
though both MPTP and MA are known to directly
damage DAergic neurons, our previous in vitro observa-
tions suggested that dynorphin-mediated neuroprotection
is not due to its direct protective effect on neurons. Instead,
there is evidence that dynorphin shows its potent anti-
inflammatory properties by inhibiting overactivation of
microglia through a process called reactive microgliosis,
which occurs when neurons are damaged by neurotoxins
or other insults. Microgliosis has been traditionally con-
sidered to serve a passive role in the removal of dead or
damaged neurons and debris by phagocytosis. However, it
is now clear that microglial cells are reactivated during
microgliosis, and further exacerbate neurodegeneration
under severe inflammatory conditions. We have shown
that many noxious endogenous compounds appear in the
extracellular milieu following neuronal injury, and are
capable of causing activation of microglia leading to react-
ive microgliosis. These compounds include membrane
breakdown products, abnormally processed, modified,
or aggregated proteins (for example, α-synuclein and
β-amyloid) [57], and leaked cytosolic compounds (for
example, α-synuclein, neuromelanin, μ-calpain, and
high-mobility group box 1) [44,58,59].
Activation of the MAC-1/PHOX axis and subsequent

production of superoxide underlie the potential mechan-
isms. Our recent studies have provided convincing evi-
dence indicating that ’reactive microgliosis’ plays a
critical and active role in the formation of a self-
propelling vicious cycle and drives the progression of
neurodegeneration [12,13,42]. The importance of react-
ive microgliosis in the progression of PD has been char-
acterized in MPTP and MA models of PD [60-62]. Thus,
we believe the neuroprotective role of dynorphin is
mainly mediated through its anti-inflammatory effect in
slowing down this vicious cycle. Consistent with changes
in motor deficits and loss of nigrostriatal DAergic neu-
rons, both toxins elicited more pronounced activation of
microglia in the nigrostriatal area based on both the
number of activated microglia and Iba1 immunoreactiv-
ity (Figure 4).
To further characterize the phenotype of microglia, we

measured the expression of several markers indicative of

M1 and M2 microglia. As mentioned above, microglia in
the brain have the classically activated M1 phenotype or
alternatively activated M2 phenotype depending on the
inflammatory conditions of the local microenvironment.
Both MPTP and MA treatment enhanced the mRNA
level expression of M1 markers (CD16, CD32, and
CD86), while those of M2 markers (arginase 1 and
CD206) were decreased (Figure 5). These results indi-
cated that microglia after toxin treatment existed mainly
in the classical activation state, which is highly proin-
flammatory. Endogenous dynorphin may serve to
dampen this neuroinflammatory process. The detailed
anti-inflammatory effects of dynorphin were investigated
in our previous cell culture studies [12,14], and the
results indicated that inhibition of microglial NADPH
oxidase-generated superoxide production is the main
site of action of dynorphin. Decreased superoxide pro-
duction by this peptide reduces the release of various
proinflammatory factors, including cytokines and prosta-
glandins, and dampens inflammation [12,14,63]. Taken
together, the findings of this in vivo study are consistent
with the hypothesis that endogenous dynorphin-elicited
neuroprotection is mainly mediated through its potent
anti-inflammatory properties.
It is worth noting that there was an interesting recip-

rocal interaction between dynorphin and substance P,
which are colocalized in the striatonigral pathway, in
their regulation of microglial activation and subsequent
DAergic neuron survival. In contrast to dynorphin, our
previous study showed that subpicomolar concentrations
of substance P produced microglia-dependent DAergic
toxicity in midbrain neuron-glia cultures [13]. Our pre-
liminary data indicated that MPTP treatment produced
less neuroinflammation and loss of DAergic neurons in
the nigrostriatal regions in substance P-deficient mice
(Wang et al., unpublished data), indicating converse
roles of these two peptides in regulating DAergic neuron
survival. At present, the homeostatic mechanisms regu-
lating microglial function in the SN are unknown. Based
on the present in vivo findings plus the observations that
dynorphins and substance P can affect nigral DAergic
neuron survival at subpicomolar concentrations in cell
cultures [12,13], it is interesting to speculate that the
balance of these two endogenous peptides appears to be
critical for microglial activation and long-term survival
of nigrostriatal DAergic neurons. We hypothesize that
while peptide modulation of acute DA neuronal activity
occurs in the synapse at micromolar concentrations, the
physiologically relevant concentrations required to regu-
late microglial activity are much lower (possibly of the
subpicomolar order), occurring after the peptides diffuse
from the synapse to outside the junction. We further
hypothesize that the sites of action of subpicomolar-
acting peptides are the microglial cells, which are
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outside the synaptic junction (presumably the concen-
trations of peptides must be much lower than those in
the synaptic junction), and are associated with long-term
regulation of neuronal survival.

Conclusions
In summary, this is the first report indicating that en-
dogenous dynorphin deficiency exacerbates motor defi-
cits and DAergic neuronal losses in MPTP- and MA-
induced rodent PD models through amplified microglial
activation. These results support the hypothesis that en-
dogenous dynorphin serves as a protector against in-
flammatory damage in the progression of PD. This study
and our ongoing research on substance P will reveal im-
portant novel functions of these two peptides in long-
term regulation of nigrostriatal DAergic neuron survival
and their roles in the pathogenesis of PD.

Additional files

Additional file 1: Supplemental Informations.

Additional file 2: Figure S1. Changes in locomotor activity (A) and
rota-rod performance (B) induced by MPTP or MA in Dyn+/+ mice. Each
value represents the mean ± standard error of the mean (S.E.M.) of 10
mice. *P <0.05, **P <0.01, ***P <0.001 vs. the respective control saline
group, &P <0.05, &&P <0.01 vs. respective control groups 3 days after the
final treatment, }P <0.05, }}P <0.01 vs. respective control groups 7 days
after the final treatment (two-way repeated-measures ANOVA followed
by post-hoc Tukey’s HSD test or pairwise comparison with paired t-test).
Figure S2. Prodynorphin gene deficiency did not affect hyperthermia
induced by MA. Dyn+/+, prodynorphin gene wild-type mice; Dyn−/−,
prodynorphin gene knockout mice. Dyn+/+ and Dyn−/− received four MA
injections (5 or 7 mg/kg, intraperinoteally) at 2-h intervals. Rectal
temperature was measured 1 h after each MA injection. Ambient
temperature: 21 ± 1°C. Each value is the mean ± S.E.M of eight mice. *P
<0.001 vs. the respective control saline group (three-way repeated-
measures ANOVA followed by post-hoc Tukey’s HSD test or pairwise
comparison with paired t-test).
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