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Abstract

Background: Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We
previously found that systemic endotoxin, a TLR4 agonist or TNFa, increased blood TNFa that entered the brain
activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking
sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the
magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the
effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3)
agonist poly I.C.

Methods: Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with
D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly
I.C (250 pg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial
morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and
cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine
histochemistry.

Results: Poly I:C increased blood and brain TNFa that peaked at three hours. Blood levels returned within one day,
whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory
responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly
l:C-induced brain TNFa (345%), IL-1B8 (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines
coincided with increased microglial activation, NOX gp91P", superoxide and markers of neurodegeneration
(activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:.C was associated with ethanol-increased
expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and naltrexone blocked microglial
activation and neurodegeneration.

Conclusions: Chronic ethanol potentiates poly I:C blood and brain proinflammatory responses. Poly I.C
neuroinflammation persists after systemic responses subside. Increases in blood TNFa, IL-13, IL-6, and MCP-1 parallel
brain responses consistent with blood cytokines contributing to the magnitude of neuroinflammation. Ethanol
potentiation of TLR3 agonist responses is consistent with priming microglia-monocytes and increased NOX, ROS,
HMGB1-TLR3 and markers of neurodegeneration. These studies indicate that TLR3 agonists increase blood cytokines
that contribute to neurodegeneration and that ethanol binge drinking potentiates these responses.
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Background
Neuroinflammation linked to neuro- and psychopathology
primarily involves induction of innate immune genes
expressed in microglia, the brain monocyte-like innate im-
mune cells. We previously found that endotoxin induced
or injection of TNFa increased blood and brain TNF «
activated microglia and induced brain monocyte chemo-
tactic protein-1(MCP-1) (also known as chemokine (C-C
motif) ligand 2 (CCL2)), IL-1p and TNFa mRNA that led
to persistent neuroinflammation and a delayed (seven to
ten months) loss of substantia nigra tyrosine hydroxylase-
positive dopamine neurons [1]. These findings were
extended to studies of motor function, which found
that seven months after a single endotoxin dose, L-3,4-
dihydroxyphenylalanine (L-DOPA) reversible rotorod defi-
cits appeared, with continuing loss of function with age
and loss of substantia nigra neurons [2]. Endotoxin (lipo-
polysaccharide (LPS)) activates innate immune responses
through toll-like receptor 4 (TLR4) activation of nuclear
factor-kappa B (NF-«B) transcription of proinflammatory
gene transcription within microglia and other cells. Micro-
glia and proinflammatory signals include multiple positive
loops of autocrine and paracrine amplification that con-
tribute to persistent microglial activation in brain [3].
These findings are consistent with hypotheses that infec-
tions early in life impact overall life span [4,5] and that
microglial activation contributes to age-associated neuro-
degenerative diseases [6]. These hypotheses suggest that
systemic inflammatory responses contribute to chronic
diseases. Although multiple toll-like receptors activate
monocyte-microglial proinflammatory responses, most
studies have modeled bacterial endotoxin-LPS-TLR4
-induced brain responses. We hypothesized that toll-like
receptor 3 (TLR3), a receptor that activates monocyte
NEF-«B transcription of proinflammatory cytokines in re-
sponse to virus-like mRNA [7], would induce blood proin-
flammatory responses and brain neuroinflammation.
Polyinosine-polycytidylic acid (poly I:C) is a synthetic
double-stranded RNA that with endogenous co-agonists,
such as high-mobility group box (HMGB) proteins, sti-
mulates proinflammatory innate immune responses
through TLR3 [8]. TLR3 receptors activate NF-kB in
monocyte-microglia, astrocytes and other cells [7,9-14]
and increase proinflammatory cytokine expression and
neuroinflammation [15-18]. Although low levels of
TLR3 are expressed in healthy human brains, multiple
neurodegenerative diseases show increased expression of
TLR3 receptors across brain regions [19]. Recent studies
indicate that TLR receptors and endogenous agonist re-
spond to cell stress, excessive glutamate excitation and/
or other ‘danger’ signals [20,21]. For example, high-
mobility group box 1 (HMGBI1), an agonist at multiple
TLR receptors and required for TLR3 activation [22], is
released from cells by neurotransmitters including
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glutamate, proinflammatory cytokines and many other
stimuli that amplify proinflammatory responses [3].
TLR3 may also play a role in neuroplasticity since TLR3-
deficient mice have increased hippocampal neurogenesis
and altered cognition [23]. These findings suggest that
levels of brain HMGB1 and TLR receptors contribute to
brain function and neuroinflammation.

Alcohol (ethanol) is a common dietary constituent that
impacts heath. Heavy binge drinking increases mortality by
escalating the risk of multisystem diseases in peripheral
organs as well as psychiatric and neurological disorders in
the central nervous system (CNS) [24]. Heavy alcohol drin-
kers have elevated levels of C-reactive protein, an innate
immune marker [18,23]. Previously, we reported that levels
of MCP-1, markers of microglia and NOX gp91P"™ were
significantly increased in human postmortem alcoholic
brain, compared to human moderate drinking control
brain [25,26]. Further, we found that human postmortem
alcoholic brain has increased histochemical markers of
neuronal cell death [26]. Alcoholism is known to cause
neurodegeneration [9]. We found that chronic administra-
tion of ethanol to mice increased brain and liver cytokines
and chemokines, including TNFa, IL-1 and MCP-1 [27].
Although acute ethanol has been found to inhibit proin-
flammatory TLR responses, including the TLR3 agonist
poly L:C [28,29], recent studies have found that toll-like
receptors (TLRs) contribute to ethanol activation of brain
proinflammatory responses and neurodegeneration [30].
These studies support a link among neuroinflammation,
ethanol and systemic proinflammatory responses.

Here, we report that acute TLR3 agonist, poly L:C, sys-
temic administration increases blood and brain TNFa,
IL-1 B, IL-6, and MCP-1. Brain responses persist for at
least three days, whereas blood levels return to controls
by one day. Chronic ethanol treatment causes mild
increases in blood and brain, whereas sequential
ethanol-poly L:C treatment leads to large responses, with
increases in blood and brain proinflammatory responses
across treatment groups. Increased levels of brain cyto-
kines coincided with activated microglial morphology,
increased NOX gp91P", superoxide and markers of
neuronal cell death, for example, activated caspase-3 and
Fluoro-Jade B staining. Ethanol potentiation of poly I:C
was associated with ethanol-induced TLR3 and HMGB1
expression. Blocked microglial activation by minocycline
and naltrexone blunted cell death markers. These studies
suggest that the magnitude of systemic proinflammatory
responses contribute to the magnitude of microglial acti-
vation, brain neuroinflammation and neurodegeneration.

Materials and methods

Animals

Eight-week-old male (20 to 22 g) C57BL/6 mice were
purchased from Jackson Laboratories (Bar Harbor, ME,
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USA). All protocols and procedures in this study were
approved by the Institutional Animal Care and Use
Committee (IACUC) and were in accordance with the
National Institute of Health regulations for the care and
use of animals in research.

Reagents

Poly I:C was purchased from Amersham Biosciences
(Piscataway, NJ, USA). Goat polyclonal TLR3 (N-14)
and HMGB1 (K-12) antibodies were purchased from
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).
Rabbit anti-Ibal antibody was purchased from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan). Monoclo-
nal anti-mouse gp91P"* was from Transduction Labora-
tories (Lexington, KY, USA). Rabbit polyclonal MAP-2
antibody was purchased from Abcam (Cambridge, MA,
USA). Polyclonal rabbit anti-glial fibrillary acidic protein
antibody was from DakoCytomation (Glostrup, Den-
mark). Cleaved caspase-3 (Aspl75) antibody was from
Cell Signaling Technology (Danvers, MA, USA). Fluoro-
Jade B and mouse NeuN antibody were from Chemicon
International (Temecula, CA, USA). TNFa, IL-1p, MCP-
1 and IL-6 ELISA kits were purchased from R&D Sys-
tems Inc. (Minneapolis, MN, USA). Hydroethidine was
from Invitrogen Molecular Probes (Eugene, OR, USA).
All other reagents came from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA).

Drug treatments

Time course of TNFa response to TLR3 agonist poly
I:C: Male C57BL/6 mice were intraperitoneally (i.p.)
injected with a single dose of poly I:.C (250 pg/kg) and
D-(+) galactosamine hydrochloride (D-GalN 20 mg/kg),
or saline (control). Mice were sacrificed at selected time
points, and sera and brain samples were used for TNFa
measurement by ELISA.

Effect of prior ethanol exposure on poly I:C-
induced neuroinflammation and neurodegeneration:
Male C57BL/6 mice were treated with water or ethanol
(5 g/kg, intragastrically (i.g.), 25% ethanol w/v) daily for
10 days. The average blood alcohol concentration at one
hour after the first ethanol treatment and the last etha-
nol treatment was 291 mg/dl+16 (w/v, n=10) and
301 mg/dl+19 (w/v, n=10), respectively. Twenty-four
hours after the last ethanol administration, mice were
injected with either saline (control) or poly I:.C (250 pg/
kg, i.p.) and D-GalN (20 mg/kg, i.p.) in saline. Mice were
sacrificed three hours after poly I:C treatment. Gene ex-
pression and protein synthesis of proinflammatory cyto-
kines, oxidative enzymes, microglial morphology, and
neurodegeneration were examined using real-time PCR,
ELISA, and immunohistochemistry.

Effect of minocycline and naltrexone on ethanol-
poly I:C-induced microglial activation and caspase-3
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expression: Male C57BL/6 mice were treated with water
or ethanol (5 g/kg, i.g.) daily for 10 days. Mice were then
injected intraperitoneally with saline, poly L:C (250 pg/
kg) and D-GalN (20 mg/kg) in saline 24 hours after the
last dose of ethanol. For ethanol-poly I:C-minocycline or
naltrexone group, mice were injected with minocycline
(50 mg/kg, i.p.) or naltrexone (60 mg/kg, i.p.) 30 minutes
before every dose of ethanol or poly I:C treatment. Brain
samples were collected three hours after poly I:C and D-
GalN administration. All experiments were performed
with seven mice per group and repeated two times.

Real-time PCR analysis

Total RNA was extracted from the brain samples of mice
treated with ethanol, poly I:C, ethanol-poly I:C or saline,
and reverse transcribed as described previously [31]. The
primer sequences used in this study were as follows: TNFa,
5'-GAC CCT CAC ACT CAG ATC ATC TTC T-3’ (for-
ward) and 5'-CCT CCA CTT GGT GGT TTG CT-3" (re-
verse); IL-1B, 5'-CTG GTG TGT GAC GTT CCC ATT
A-3’ (forward) and 5'-CCG ACA GCA CGA GGC TTT-
3" (reverse); IL-6, 5'-GGC CTT CCC TAC TTC ACA
AG-3’ (forward) and 5'-ATT TCC ACG ATT TCC CAG
AG-3’ (reverse); MCP-1, 5'-ACT GAA GCC AGC TCT
CTC TTC CTC-3' (forward) and 5'-ACT GAA GCC
AGC TCT CTC TTC CTC-3’ (reverse); TLR3, 5'-TTG
TCT TCT GCA CGA ACC TG-3’ (forward) and 5'-GGC
AAC GCA AGG ATT TTA TT-3' (reverse); HMGBI, 5'-
CCATTG GTG ATG TTG CAA AG-3’ (forward) and 5'-
CTT TTT CGC TGC ATC AGG TT-3' (reverse);
gp91P", 5 -CAG GAG TTC CAA GAT GCC TG-3’ (for-
ward) and 5'-GAT TGG CCT GAG ATT CAT CC-3 (re-
verse); B-actin, 5'-GTA TGA CTC CAC TCA CGG CAA
A-3" (forward) and 5'-GGT CTC GCT CCT GGA AGA
TG-3" (reverse). The SYBR green PCR master mix (Ap-
plied Biosystems, Foster City, CA, USA) was used for real-
time PCR analysis. The relative differences in expression
between groups were expressed using cycle time (Ct)
values normalized with B-actin, and relative differences be-
tween control and treatment group were calculated and
expressed as relative increases setting control as 100%.

Immunohistochemistry

Mouse brains were fixed with 4% paraformaldehyde in
phosphate buffered saline (PBS) and processed for
immunostaining as described previously [31]. TLR3 and
HMGB1 were immunostained with TLR3 and HMGB1
antibodies. Microglia were stained with rabbit anti-Ibal
antibody. NADPH oxidase membrane subunit gp91P"*
was immunostained with monoclonal anti-mouse gp91P"™
IgG. Activated caspase-3 was immunostained with poly-
clonal anti-cleaved caspase-3 antibody. Caspase-3 co-
labeling with NeuN was performed with caspase-3 and
NeuN antibodies. Neurons were stained with MAP2 or
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NeuN antibody. Astrocytes were labeled with GFAP anti-
body. Immunolabeling was visualized by using nickel-
enhanced 3,3’'-diaminobenzidinne (DAB) or Alexa Fluor
488 or 555 dye.

03 and O>-derived oxidant measurement

In situ visualization of O3 and O-derived oxidant pro-
duction was assessed by hydroethidine histochemistry
[32,33]. Mice were injected with dihydroethidium (10 mg/
kg, i.p.) in 0.5% carboxymethyl cellulose 2.5 hours after poly
L:C. injection. Brains were harvested 30 minutes later and
frozen sections (15 pm) were examined for hydroethidine
oxidation product, ethidium accumulation, by fluorescence
microscopy (excitation 510 nm; emission 580 nm).

Fluoro-Jade B staining with NeuN labeling

Mouse brain sections were immunostained with mouse
NeuN antibody. Immunolabeling was visualized by using
Alexa Fluor 555 dye. Sections were rinsed three times
with PBS and one time with water before performing the
Fluoro-Jade B procedure. Briefly, sections stained with
NeuN were mounted on Superfrost Plus microscope
slides and air dried overnight. The sections were rinsed
in distilled water for two minutes to rehydrate and trans-
ferred to a solution of 0.06% potassium permanganate
for ten minutes. The sections were then rinsed in dis-
tilled water for two minutes and placed in a 0.0004%
Fluoro-Jade B solution made by adding 4 ml of a 0.01%
stock solution of Fluoro-Jade B to 96 ml of 0.1% acetic
acid. After 20 minutes in the Fluoro-Jade B staining so-
lution, the stained slides were thoroughly washed in dis-
tilled water, dehydrated, and cover slipped.

Microscopic quantification

Immunoreactivity of mouse gp91P"** and Ibal, fluores-
cent intensity of Fluoro-Jade B and ethidium were quan-
tified using Bioquant Image Analysis software (Nashville,
TN, USA). Images were captured on an Olympus
(Tokyo, Japan) BX51 microscope and Sony (Tokyo,
Japan) DCX-390 video camera at 40X. Light levels were
normalized to preset levels and the microscope, camera,
and software were background corrected to ensure reli-
ability of image acquisition [34]. In each region (cortex
and dentate gyrus), six random images from each
brain sample were captured within a standard region
of interest (ROI), the density of immunostaining and
fluorescence was measured in pixels within this area
(pixels/mm?). Subsequently, the average of the six mea-
surements was used to represent the immunoreactivity
or fluorescence intensity of each sample. When measur-
ing fluorescence intensity in the cells, we eliminated the
background by adjusting the threshold to avoid back-
ground staining. For + immunoreactive (+IR) cell count-
ing, a modified stereological method was used to
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quantify cells within regions of interest following immu-
nostaining of brain sections using the CAST stereologi-
cal system [35,36]. Specifically, cell density (N,) of TLR3,
HMGBI, caspase-3 and Ibal + immunoreactive (+IR)
cells was determined following the optical dissector
method [37,38], which was calculated as follows:

N, = XQ/Zdis sector x A(fr)xh

Where > Q is the sum of + IR cells counted from each
dissector frame, Y dissector is the sum of the number of
dissector frames counted, A(fr) is the known area associated
with each dissector frame, and h is the known distance be-
tween two dissector planes (10 pm was used). For co-
labeling study, double-stained sections were digitally photo-
graphed with Leica (Wetzlar, Germany) SP2-AOBS confocal
microscope and analyzed with Leica SP2 LCS software.

TNFaq, IL-1B, IL-6, and MCP-1 assays

Frozen brains were homogenized in 100 mg tissue/ml cold
lysis buffer (20 mM Tris, 0.25 M sucrose, 2 mM EDTA,
10 mM EGTA, 1% Triton X-100) and one tablet of
Complete Mini protease inhibitor cocktail tablets/10 ml
(Roche Diagnostics, Indianapolis, IN, USA). Homogenates
were centrifuged at 100,000 x g for 40 minutes, super-
natant was collected, and protein levels determined using
the BCA protein assay reagent kit (PIERCE, Milwaukee,
WI, USA). The levels of TNFq, IL-1f3, IL-6 and MCP-1 in
brains or sera were measured with TNFa, IL-1f, IL-6 and
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Figure 1 TLR3 agonist poly I:C induction of TNFa in mouse
serum and brain. Levels of proinflammatory cytokine TNFa were
determined following a single poly I.C (250 pg/kg, ip.) and
D-galactosamine (D-GalN, 20 mg/kg, i.p.) injection into C57BL/6
mice. At the time points indicated, mice were sacrificed and brain
extracts and sera prepared as described in methods. Note both
brain and serum TNFa peaked at three hours. Interestingly, blood
(serum) TNFa declined to control level by 24 hours whereas brain
TNFa level remained elevated at about half the peak level for at
least 72 hours. The results shown are the means + SEM of two
experiments performed with seven mice per time point. *P <0.05,
**P <0.01, compared to the corresponding vehicle controls.
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mouse JE/MCP-1 commercial enzyme-linked immuno-
sorbent assay (ELISA) kits from R&D Systems (Minneap-
olis, MN, USA), as described previously [39].

Statistical analysis

The data are expressed as mean + standard error of the
mean (SEM) and statistical significance was assessed with
an ANOVA followed by Bonferronis ¢ test using the
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StatView program (Abacus Concepts, Berkeley, CA, USA).
A value of P <0.05 was considered statistically significant.

Results

TLR3 agonist induction of systemic and brain innate
immune proinflammatory genes

We have previously found that induction of brain TNFa fol-
lowing intraperitoneal injections of LPS, a toll-like receptor 4
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Figure 2 Effect of chronic ethanol treatment on poly I:C-induced blood and brain TNFa and IL-1B. As described in the methods, male
C57BL/6 mice were treated intragastrically with ethanol (5 g/kg, i.g. daily for 10 days) and 24 hours after the last dose of ethanol treatment

injected intraperitoneally with poly I:C (250 pg/kg) plus D-GalN (20 mg/kg). Brains were collected three hours after poly I:C injection for all groups,
that is, ethanol alone is 27 hours after the last dose of ethanol. The levels of serum TNFa and IL-13 protein and brain TNFa and IL-13 mRNA and
protein were measured by real-time PCR and ELISA. (A) Poly I:C treatment increased serum TNFa protein and brain TNFa mRNA and protein.
Ethanol treatment did not alter serum TNFa protein, but increased brain TNFa mRNA and protein. Ethanol exposure potentiated poly I:C-induced
serum TNFa protein as well as brain TNFa mRNA and protein. (B) Poly I:.C treatment increased serum IL-13 protein and brain IL-13 mRNA and
protein. Ethanol alone had no significant effect. Ethanol pretreatment potentiated poly I:C-induced serum IL-1(3 protein and brain IL-13 gene
expression and protein synthesis. The results are the means+ SEM in two independent experiments with seven animals per group. *P <0.05, **P
<001, compared with the vehicle control group. “P <0.05, compared with the corresponding poly IC treated group.
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agonist, is related to blood TNFa that is transported into the
brain inducing a response that lasted at least 10 months [1].
We hypothesized that poly I:C, a TLR3 agonist known to acti-
vate systemic and brain innate immune responses, would in-
duce parallel systemic and brain proinflammatory responses
that cause persistent brain activation. Poly I:C treatment of
mice increased TNFa serum levels that peak around three
hours at more than tenfold basal levels returning to near zero
by 24 hours (Figure 1). Poly L:C treatment increased brain
levels of TNFa that peaked at three hours after poly I:C at
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about 6 fold basal levels and remained significantly elevated
for at least three days. These findings are consistent with
acute systemic proinflammatory activation contributing to
persistent brain neuroinflammatory responses.

To investigate chronic ethanol proinflammatory respon-
ses and poly I:C TLR3 agonist responses across multiple
proinflammatory agents, we determined proinflammatory
responses in ethanol alone, poly I:C alone or sequential
ethanol-poly I:C administration in C57BL/6 mice. We com-
pared induction of cytokines, TNFa, IL-1f, IL-6 and the
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Figure 3 Effect of chronic ethanol treatment on poly I:C-induced blood and brain IL-6 and MCP-1. As described in the methods, male
C57BL/6 mice were treated intragastrically with ethanol (5 g/kg, i.g. daily for 10 days) and 24 hours after the last dose of ethanol treatment injected
intraperitoneally with poly I.C (250 pg/kg) plus D-GalN (20 mg/kg). Brains were collected three hours after poly I:C injection for all groups, that is,
ethanol alone is 27 hours after the last dose of ethanol. (A) Ethanol or poly I:C alone treatment increased serum IL-6 protein and brain IL-6 mRNA and
protein. Sequential ethanol-poly I:C treatment significantly augmented the blood and brain levels of IL-6. (B) Ethanol or poly I:C alone treatment
increased serum MCP-1 protein and brain MCP-1 mRNA and protein. Ethanol pretreatment potentiated poly :C-induced serum MCP-1 protein and
brain MCP-1 gene expression and protein synthesis. The results are the means + SEM in two independent experiments with seven animals per group.
*P <005, **P <001, compared with the vehicle control group. *P <0.05, compared with the corresponding poly IIC treated group.
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chemokine, MCP-1, that we previously found increased in
postmortem human alcoholic brain [25]. Brains of mice
treated for 10 days with a binge-drinking dose of ethanol
followed by 27 hours of abstinence showed a significant in-
crease in both TNFa mRNA and protein, although TNFa
did not show an elevation in serum after chronic ethanol
(Figure 2). Brains of ethanol-treated mice also showed
increased IL-6 and MCP-1 mRNA and protein. Serum of
ethanol-treated mice showed a 4 fold increase in MCP-1
and a 50% increase in IL-6, although values remained rela-
tively low compared to those found with poly I:C treatment
(Figure 3). Poly I:C treatment increased serum levels of
TNFa, IL-1p, IL-6, and MCP-1 manyfold over vehicle con-
trol basal levels. Similarly brain mRNA and protein for
TNFa, IL-1B, IL-6, and MCP-1 were increased manyfold by
poly I:C treatment (Figures 2 and 3). Interestingly, ethanol
pretreatment potentiated poly L:C responses increasing
levels of proinflammatory cytokines in both blood and
brain. The blood IL-1j3 level increased more than 10 fold in
ethanol-poly I:C-treated mice (Figure 2). In brain, ethanol
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pretreatment potentiated poly L:C induction of TNFa
mRNA from 4 to 10 fold, IL-1p mRNA from 4 to 8 fold,
IL-6 mRNA from 6 to 12 fold, and MCP-1 mRNA from 28
to 49 fold (Figures 2 and 3). Ethanol pretreatment also
increased poly I:C induction of TNFa, IL-1fB, IL-6, and
MCP-1 protein levels in brain (Figures 2 and 3). These
results indicate that acute serum proinflammatory
responses mimic brain proinflammatory responses. Both
blood and brain show a modest ethanol response, marked
poly I:C TLR3 agonist response and sequential ethanol-poly
L:C amplification of proinflammatory gene induction.
Microglia, the resident innate immune cells in the brain,
produce proinflammatory factors that contribute to neuro-
degeneration through increased proinflammatory super-
oxide and other toxic agents [6]. In previous studies, we
found that the postmortem human alcoholic brain showed
increased Ibal + IR, a microglial marker [25]. We investi-
gated microglial Ibal + IR to evaluate size and morpho-
logical changes of microglia. Control subjects showed
resting microglial morphology (Figure 4), with mild
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Figure 4 Immunocytochemical analysis of microglia. Mice were treated as described above. (A) Levels of immunoreactive density of Ibal, a marker
of microglia, in cortex and hippocampal dentate gyrus were quantified using BioQuant image analysis software and presented as mean = SEM in pixel/mm?.
Ethanol alone, poly I.C alone and ethanol-poly I:C treated groups all show increased Iba1 + IR in both brain regions. (B) Representative images of Ibal + IR
cells in cortex and dentate gyrus from control and ethanol-poly :C-treated groups. In water control group, microglia showed a resting morphological shape.
In either ethanol or poly I:C alone-treated groups, some of the microglia are enlarged (images not shown). Ibal+IR cells in EtOH-poly .C-treated mouse
brains have increased cell size, irregular shape, and intensified Iba1 staining consistent with morphological changes in activated microglia. Scale bar, 200 um.
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increases in Ibal + IR staining with ethanol or poly L:C
alone treatment (images not shown). Ethanol pretreatment
further potentiated poly L:C increased Ibal + IR. Multiple
brain regions, including cortex and dentate gyrus, showed
increased Ibal + IR (Figure 4). These studies indicate that
ethanol primes microglia and potentiates TLR3 agonist
poly I:C activation of microglia.

Proinflammatory brain NADPH oxidase and reactive
oxygen species

NADPH oxidase (NOX) is a family of oxidases known to
produce superoxide and NOX is thought to be involved in
neurodegeneration [40]. To determine the role of NOX in
TLR3 agonist proinflammatory responses, we investigated

Page 8 of 18

the expression of NOX gp91P"*, the catalytic subunit of
phagocytic oxidase commonly associated with proinflam-
matory responses. Poly L:C induced NOX gp91P"** mRNA
2 to 3 fold (Figure 5A) and NOX gp91P"* + IR by
manyfold more in cortex and hippocampal dentate gyrus
(Figure 5B). Ethanol treatment produced a non-significant
trend toward an increase in NOX gp91 mRNA, but did in-
crease gp91P™™ + IR above control levels to about half of
that found with poly L:C alone. Ethanol potentiated the poly
L:C TLR3 responses with both NOX gp91P"* mRNA and
NOX gp91P"** + IR increased in cortex and hippocampus
(Figure 5). Double antibody studies with cell specific mar-
kers and confocal microscopy indicate that ethanol-poly I:
C-induced NOX gp91P"** + IR is colocalized with neuronal
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Figure 5 Induction of NOX-NADPH oxidase subunit gp91ph°" expression. Male C57BL/6 mice were treated with ethanol, poly I:C, ethanol-poly I:
C as indicated in methods. (A) gp91°"™ gene expression was determined by real-time PCR three hours after poly I:C treatment. Note chronic ethanol
pretreatment increased brain poly 1C-induced gp91P"™* mRNA by 2.7-fold. (B) NADPH oxidase subunit gp91°"™ + IR in cortex and dentate gyrus (DG).
Sections were stained with monoclonal mouse gp91P"> antibody and quantified by BioQuant image analysis system. NADPH oxidase subunit

gp91P"* 4+ IR was increased in cortex about 6 fold by ethanol and 14 fold by poly IC and in DG about 5 fold by ethanol and 10 fold by poly IC.
Pretreatment of ethanol significantly enhanced poly [C-induced gp91°™ + IR in both cortex and DG. (C) The images shown are representative of
gp91P"* 4+ IR cells from cortex (left) and dentate gyrus (right) for control (upper images) and ethanol-poly I.C groups (lower images). *P <0.05, **P <001,
compared with the vehicle control mice. *P <0.05, P <001, compared with poly I:C-treated mice. Scale bar, 200 um.
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marker (MAP-2) and a microglial marker (Ibal) but
there is little colocalization with astrocytic marker (GFAP)
(Figure 6). These results indicate that TLR3 activation
increases brain NOX gp91P"*,

Activation of NADPH oxidase (NOX) produces super-
oxide in brain and superoxide formation was assessed in
the present experiment by histochemistry using in situ
visualization of reactive oxygen species, for example, O;
and Os-derived oxidant production of ethidium from
hydroethidine [32,33]. In vehicle-treated mice, there was
little to no detection of O3 and O3-derived oxidant pro-
duction of ethidium (Figure 7). In mice that received ei-
ther ethanol or poly I:C treatment, there was a significant
increase in the production of O3 and O5-derived oxidants
27 hours after the last dose of ethanol or three hours after
poly L:C administration. Pretreatment with ethanol
increased poly I:C production of O3 and O5-derived oxi-
dants 3 to 4 fold above poly L:C alone and more than 10
fold over controls (Figure 7). These findings indicate that
ethanol increases expression of NOX gp91P"** and the for-
mation of reactive oxygen species by TLR3 agonist.

Ethanol increases brain TLR3 and HMGB1
To investigate the mechanisms of ethanol proinflamma-
tory responses we measured the expression of TLR3 and
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HMGBI, a ubiquitous TLR3 co-agonist. Ethanol treat-
ment increased brain TLR3 mRNA (Figure 8A-a). Toll-
like receptor positive immunoreactivity (+IR) provides
insight into protein levels and ethanol increased TLR3 +
IR cells by at least 2 fold in cortex (Figure 8 A-b). Cells
with upregulated TLR3 expression appear to be neurons,
which are consistent with previous findings by others
that TLR3 was expressed in many cell types of the brain
in mice [18], including neurons [41], microglia [9] and
astrocytes [23]. These measurements were assessed 24
hours after the last ethanol dose indicating that TLR
increases persist after blood ethanol concentrations re-
turn to zero and during the poly I:C responses. HMGB1
can bind to and activate multiple TLR receptors [42]
being required for TLR3 receptor activation [22]. Etha-
nol treatment increased both brain HMGB1 mRNA
(Figure 8B-a) and HMGBI1 + IR (Figure 8B-b) by about
2 fold in cortex. Thus, ethanol treatment increased both
HMGBI1 and TLR3 receptors in brain (Figure 8).

Increased TLR3 proinflammatory responses increase
neurodegeneration

To investigate the relationship among proinflammatory
gene induction, microglial activation, oxidative stress, and
neuronal cell death, we assessed the cell death markers,

aparer

Figure 6 Confocal microscopy with cell specific markers finds neuronal and microglial expression of NADPH oxidase subunit gp9
Brain sections from ethanol-poly C-treated mice were double-labeled for gp91P™ in green with neuronal marker MAP-2, microglial marker Ibat, or
astroglial marker GFAP in red. Co-labeling was investigated using a Leica SP2 LCS confocal microscope with associated software. The representative
images shown are from dentate gyrus of mice treated with ethanol-poly I:.C. The left panel of pictures shows gp91
specific markers, for example, neuronal MAP-2 (upper panel), microglial Iba1 (middle) and astrocyte GFAP (lower panel) pictures. Merged images are to the
right. Merged yellow indicates red and green are combined and likely co-localized within the marked cell. Merged pictures on the right with enlarged

cells suggest that gp91P"™ + IR is expressed in MAP-2 neurons (yellow) and Ibal microglia (yellow), but not in astrocytes. Scale bar, 30 um; inset 5 pm.

1phox

PhoX IR, The middle panel shows cell
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Figure 7 Superoxide formation and oxidative stress in brain. Mice were injected with hydroethidine (dihydroethidium, 10 mg/kg, i.p.) 2.5 hours
after poly I:.C treatment and brains harvested 30 minutes later, frozen and sectioned (15 um thickness) as described in the methods. The oxidation
product, ethidium, is formed from dihydroethidium by superoxide resulting in ethidium accumulation within cells producing superoxide. Ethidium is
detected as red nuclei by fluorescence microscopy. The level of fluorescence intensity of ethidium-positive cells was quantified by BioQuant image
analysis software. (A) Quantitation of ethidium fluorescence indicates ethanol, poly I.C and ethanol + poly I:C treatment significantly increases O, and
O,-derived oxidant production in cortex. (B) Representative images of ethidium fluorescence. Ethanol and poly I:C alone increased O and O>-derived
oxidant production compared with vehicle control. Ethanol pretreatment significantly potentiated poly I:C-induced O, and Ox-derived oxidant
production. **P <0.01, compared with vehicle control group. "*P <0.01 compared with poly I:C group. Scale bar, 200 pm.
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activated caspase-3 and Fluoro-Jade B. Ethanol, poly I:.C
and sequential ethanol-poly I:C increased caspase-3 + IR
cells in both cortex and hippocampus (Figure 9). Ethanol-
poly L:C caused significantly greater increases in caspase-3
+ IR cells than either alone. Double immunohistochemis-
try with confocal microscopy revealed that caspase-3 + IR
was colocalized with NeuN, a neuronal marker, in both
cortex and hippocampus (Figure 9E), suggesting neuronal
cell death. Fluoro-Jade B, another cell death marker, was
also increased by ethanol, poly I:C and sequential ethanol-

poly LC treatment in both cortex and hippocampus
(Figure 10). Pretreatment with ethanol more than doubled
poly I:C increases in Fluoro-Jade B staining, compared to
poly I:C alone group (Figure 10A). Confocal microscopy
indicated that most Fluoro-Jade B-positive cells were colo-
calized with NeuN + IR in both cortex and hippocampal
dentate gyrus (Figure 10B). These results indicate that
markers of neuronal death are increased by ethanol, poly
LI:C and sequential ethanol-poly I:C in parallel with induc-
tion of neuroinflammatory genes and oxidative stress.
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Figure 8 Ethanol increases TLR3 and HMGB1 expression.
Chronic ethanol treatment of C57BL/6 mice (5 g/kg, i.g., daily for

10 days) increased mRNA and protein expression (+IR) of brain TLR3
and HMGBT. (A) Quantitation of TLR3 mRNA and TLR3 +IR. (A-a)
Level of brain TLR3 mRNA 27 hours following the last dose of
ethanol treatment was measured using real-time PCR as described
in the methods. Ethanol exposure significantly increased brain TLR3
mRNA. (A-b) TLR3 +IR cells were counted in mouse cortex after
TLR3 immunostaining. Ethanol significantly increased the number of
TLR3 + IR cells. (A-c) Representative images of immunohistochemical
staining for TLR3 in the cortex of control and ethanol-treated mice.
(B) Quantitation of HMGB1 mRNA and HMGB1 + IR. (B-a) HMGB1
mMRNA was measured by real-time PCR in which ethanol increased
by about 2 fold. (B-b) Quantitative evaluation of HMGB1 +IR. The
number of HMGB1 + IR cells was increased about 2 fold. (B-c) The
representative images of immunohistochemical staining for HMGB1
in the cortex of control and ethanol-treated mice. *P <0.05, **P
<0.01, compared with water control group. Scale bar, 50 pm.

Inhibition of microglial activation and neurodegeneration
Microglia are the innate immune cells of brain and are
known to initiate neuroinflammatory responses [6]. Ibal
+ IR provides a morphological assessment of microglial
activation that parallels the progressive proinflammatory
oxidative stress responses in brain to ethanol, poly I:.C
and ethanol-poly I:C (Figures 4 and 5). Minocycline, an
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antibiotic known to block microglial activation [43], was
used to investigate the link between proinflammatory
microglial activation and markers of neuronal death.
Minocycline treatment blocked ethanol-poly I:C-induced
increases in microglial Ibal + IR (Figure 11) as well as
caspase-3 + IR (Figure 12) suggesting microglial proin-
flammatory activation contributes to neuronal death. Re-
cent studies have found that the opiate receptor
antagonist naltrexone has anti-inflammatory actions
that, in part, are related to binding to TLR receptors
[44,45]. We found that naltrexone blocked ethanol-poly
I:C increased microglial activation and expression of
activated caspase-3, a cell death marker (Figures 11 and
12). These findings indicate that minocycline and nal-
trexone inhibition of microglial activation by ethanol,
poly I:C and ethanol pretreatment potentiated proin-
flammatory responses blunt ethanol-poly I:C potentiated
neurodegeneration.

Discussion

We report here that intraperitoneal poly I:C when sensi-
tized with D-GalN increased cytokines (TNFa, IL-1,
IL-6) and the cytokine-chemokine (MCP-1) in both
blood and brain. Either poly I:C or D-GalN alone did
not elevate serum and brain TNFa levels (data not
shown), which is consistent with previous studies [4,46].
The three-day time course indicated poly I:C-induced
brain and blood TNF«a peaked at approximately three
hours. Previously we found that intraperitoneal LPS, a
toll-like receptor 4 (TLR4) agonist, increases liver, brain
and blood TNFa that peaked one hour after treatment
[1]. Increases in blood TNFa by TNFa injection or
induced through LPS treatment required blood—brain
barrier TNFa receptor-mediated transport to fully acti-
vate brain neuroinflammatory responses [1]. Many tis-
sues may release cytokines into blood, spreading
proinflammatory responses to other tissues. The liver
and gut have large numbers of monocyte-like cells mak-
ing it likely they release cytokines into the blood. Al-
though  poly I:C-stimulated brain and blood
TNFapeaked at the same time, blood levels returned to
near zero by one day, whereas brain TNFa levels
remained elevated for three days, the longest time point
studied. We found a single LPS injection induced a
blood response of less than 24 hours, whereas the brain
neuroinflammatory response lasted for more than
10 months [1], consistent with the hypothesis that
increases in blood proinflammatory cytokines trigger a
persistent increase in neuroinflammation. A delayed in-
crease in liver anti-inflammatory IL-10 may contribute
to loss of systemic responses, whereas brain shows a
delayed decrease in IL-10, possibly contributing to per-
sistent brain neuroinflammation [27]. In this study, we
investigated TNFa, IL-1B, IL-6 and MCP-1 in both
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Figure 9 Activated caspase-3 + IR in brain. Brain sections were stained with polyclonal cleave caspase-3 (Asp175) antibody, a marker of cell
death. (A) Quantitation of caspase-3 +IR in cortex. The number of caspase-3 + IR cells in cortex was increased by ethanol, poly I:.C and sequential
ethanol-poly I:C. (B) Quantitation of caspase-3+ IR in hippocampal dentate gyrus. The number of caspase-3 + IR cells in dentate gyrus was
increased by ethanol, poly I:C and sequential ethanol-poly I:.C. The results are the means + SEM of two independent experiments performed with
seven mice per group. *P <0.05, **P <001, compared with vehicle control. P <001, compared with poly I:C. (C and D) Representative images
of caspase-3+IR in cortex (C) and dentate gyrus (D) in vehicle control and ethanol-poly I:C groups. Scale bar, 200 um. To determine if caspase-3
+ IR was within neurons, brain sections were double-stained with NeuN (a neuronal marker). (E) Confocal microscopy images of cortex (upper
panels) and dentate gyrus (lower panels) in ethanol-poly I:C group. Immunolabeling was visualized by using Alexa Fluor 488 and 555. Confocal
microscopy indicates that caspase-3 + IR cells in green (left panels) are NeuN positive in red (middle panels), as shown in the merged images
(right panels) with arrows indicating yellow co-labeling of caspase-3 and NeuN. Insets are higher magnification of the merged images. Scale bar,
30 pm; inset 5 pm.

blood and brain across four treatment groups that pro-
vided graded responses increasing in magnitude, for ex-
ample, low controls, small ethanol alone responses,
significant poly I:C responses and the largest response
from ethanol-poly I:C treatment. For example, serum
MCP-1 and brain MCP-1 mRNA and protein increase in
parallel from controls that are a fewfold less than

ethanol alone, with poly I:C alone manyfold larger and
sequential ethanol-poly L:C treatment being significantly
more than any other treatments. We also found that
microglia, the innate immune cells of brain, showed
morphological activation that paralleled the level of
proinflammatory gene induction across control, ethanol,
poly I:C and ethanol-poly I:C groups consistent with



Qin and Crews Journal of Neuroinflammation 2012, 9:130
http://www.jneuroinflammation.com/content/9/1/130

Page 13 of 18

Cortex

w
(1]
o

>

**#

wl [ [~ w
o (=] (4] [=]
o o o o

Fluoro-Jade B fluorescence
=
=]

intensity (X10%, pixel'mm?)

[.]
o

EtOH

o
Control

Paly 1C  EtOH+
Poly IC

Cortex

Dentate gyrus

indicating yellow co-labeling. Scale bar, 30 um.

Figure 10 Activated Fluoro-Jade B in brain. (A) Brain sections were stained with Fluoro-Jade B, a marker of cell death, and quantitated in
cortex and dentate gyrus. The Fluoro-Jade B fluorescence in cortex and dentate gyrus was increased by ethanol, poly I:C and sequential
ethanol-poly I:C. The results are the means £+ SEM of two independent experiments performed with seven mice per group. **P <0.01, compared
with vehicle control. P <0.01, compared with poly I:C. (B) Confocal microscopy images of cortex (upper panels) and dentate gyrus (lower
panels) in ethanol-poly I:C group. Immunolabeling was visualized by using Alexa Fluor 488 and 555. Confocal microscopy indicates that
Fluoro-Jade B in green (left panels) are NeuN positive in red (middle panels), as shown in the merged images (right panels) with arrows
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microglia responding to blood proinflammatory signals
and amplifying the responses. We show here that TNFaq,
IL-1B, IL-6, and MCP-1 each shows graded increases in
blood that resemble graded increases in brain mRNA
and protein as well as stages of microglial activation
across treatment groups. Proinflammatory cytokines
have a blood-to-brain saturable transport system that
carries cytokines and chemokines across the blood—brain
barrier into brain [41]. Increased mRNA indicates brain
protein increases are likely both synthesis and transport.
Microglia are the innate immune cells of brain that ex-
press cytokine and TLR receptors that respond to many
immune signals including cytokines and endogenous

TLR agonists, such as HMGBI, a ubiquitous protein and
TLR receptor agonist [42,47,48]. Microglia are uniquely
sensitive to the brain environment and are thought to
initiate neuroinflammatory responses [6]. This is consist-
ent with our finding of increasing morphological activa-
tion of microglia coinciding with induction of brain
TNFa, IL-1B, IL-6, and MCP-1 mRNA and blood pro-
tein levels of these cytokines and chemokines (Figure 13).
However, endothelial cells in brain form the blood—brain
barrier and both transport and increase synthesis and se-
cretion of cytokines into brain [49]. Our findings are
consistent with increases in blood proinflammatory cyto-
kines contributing to activation of brain microglia,
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Figure 11 Minocycline and naltrexone block microglial
activation. (A) Quantification of activated Ibal + IR cells in cortex.
Ethanol, poly I:C and ethanol-poly I:.C treatment groups show
increased microglial activation. Minocycline and naltrexone
decreased ethanol-poly I:C-activated Ibal + IR cells. (C, control; E,
ethanol; P, poly I:C; EP, ethanol-poly I:.C; EPM, ethanol-poly
l:C-minocycline; EPN, ethanol-poly I:C-naltrexone.). (B) Representative
images from vehicle control (C), ethanol-poly I:.C (EP), ethanol-poly I:
C-minocycline (EPM) and ethanol-poly :C-naltrexone (EPN) groups in
cortex. In control, EPM and EPN groups, most microglia are in a
resting state: small cell bodies with thin, highly ramified processes. In
the EP-treated group, microglia are activated: large cell bodies,
irregular shape and intensified Ibal staining. **P <0.01, compared
with control group. *P <001, compared with poly I:C group. sop

<0.01, compared with ethanol-poly I:C group. Scale bar, 200 pm.

endothelial cells and neuroinflammatory gene induction
in multiple types of brain cells (See Figure 13).
apkkkkProinflammatory responses expand through
paracrine and autocrine amplification, for example, within
the initially activated, such as microglia, as well as across
adjacent cells through signals that converge upon NF-kB
activating transcription [3,50]. TNFa receptors, IL-1p
receptors, poly I:C-TLR3 receptors and LPS-TLR4
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Figure 12 Minocycline and naltrexone blunt ethanol-poly
I:C-induced caspase-3 +IR. (A) Brain sections were stained with
polyclonal cleave caspase-3 (Asp175) antibody. Immunolabeling was
visualized by using nickel-enhanced 3,3-diaminobenzidinne (DAB) as
described in the methods. The number of caspase-3 + IR cells in cortex
was significantly increased in ethanol, poly I:.C and ethanol-poly I:C
treatment groups. Minocycline and naltrexone reduced ethanol-poly I:
C-induced caspase-3 expression. (C, control; E, ethanol; P, poly I.C; EP,
ethanol-poly :C; EPM, ethanol-poly I:.C-minocycline; EPN, ethanol-poly |:
C-naltrexone). (B) Images are representative of vehicle control (C),
ethanol-poly I:.C (EP), ethanol-poly :.C-minocycline (EPM) and
ethanol-poly l:C-naltrexone (EPN) groups in cortex. Scale bar, 50 pm. *P
<005, *P <001, compared with vehicle control. P <001, compared
with poly I.C. **P <001, compared with ethanol-poly I:C.

receptors activate kinases cascades that increase NF-kB
transcription [51]. We found increased brain TNFa, IL-1f3,
IL-6, MCP-1 and NOX mRNA consistent with activation
of NF-«B transcription. Resting microglia express TLR
and cytokine receptors that can respond to cytokines
entering the brain and contribute to proinflammatory
amplification in brain. Increases in brain cytokines trans-
ported from blood and/or synthesized within brain likely
contribute to brain responses (Figure 13).

At least two other mechanisms may contribute to
brain responses, oxidative stress and HMGB1-TLR sig-
naling. NF-«B transcription is also activated by reactive
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Figure 13 Schematic summary and hypothetical mechanisms of neuroinflammation and neurodegeneration. (Lower left) Chronic ethanol
treatment potentiates poly I:C increases serum TNFa IL-1B, IL-6 and MCP-1 protein. These proteins in the blood enter the brain through transport
systems or other mechanisms as described in the discussion (upper left). In brain these proinflammatory cytokines activate microglia. Ethanol can
also directly activate NF-kB transcription. Activated microglia amplify the brain neuroinflammatory response through at least three potential
mechanisms. Loop 1 represents microglial synthesis and release of cytokines that activate transcription factor NF-kB to synthesize and release
more inflammatory cytokines, which further activates the microglia, producing more proinflammatory signals. Loop 2 involves activation of
NADPH oxidase (NOX) in microglia that produces reactive oxygen species that activate transcription factor NF-kB to synthesize and release more
inflammatory cytokines. Loop 3 involves HMGB1, a TLR activator, and TLR3 on microglia that stimulates NF-kB and microglial activation. Cytokine,
glutamate and/or ethanol release of HMGB1 that can activate multiple TLR receptors on microglia. Our findings of ethanol increased HMGB1 and
TLR3 expression in brain support a role for loop 3 in microglial activation. Together, these amplify proinflammatory responses that spread from
microglia to neurons (upper right). Neuronal expression of NOX increases oxidative stress leading to neuronal death. Minocycline and naltrexone
block microglial activation and blunt neuronal death. These studies suggest that blood proinflammatory signals contribute to neuroinflammation
and neurodegeneration that can be prevented by blocking microglial proinflammatory activation.

oxygen species and we found increased expression of
NOX and superoxide, another possible mechanism of
amplification of brain proinflammatory responses. Yet
another mechanism could involve HMGB1, a ubiquitous
cytokine-like protein that is an agonist or co-agonist
across multiple TLR and other innate immune receptors.
HMGBI1 is released by hyper-excitability, cytokines, cell
damage, TLR receptor activation and other stimuli [52]
(Figure 13). Recent studies have found that HMGBI is
required for TLR3 receptor signaling [22]. HMGB1 re-
lease and activation of TLR receptors represent another
mechanism of brain proinflammatory amplification in
addition to oxidative stress and brain cytokine increases.

We found that ethanol increased brain expression of
HMGBI1 and TLR3 as well as potentiating poly I:C in-
duction of proinflammatory genes. In vitro studies have
found ethanol increased NF-«B transcription in brain
slice cultures [3,50,53], astrocytes [54] and microglial
cultures [55]. Ethanol activation mimics LPS-TLR4 in-
duction of neuroinflammation [27] and is blunted in

mice lacking TLR4 receptors [27,30]. Consistent with
ethanol inducing neuroinflammation, studies of post-
mortem human alcoholic brain have found increased ex-
pression of inflammatory genes and genes linked to
increased NF-kB-DNA [56], as well as increased histo-
chemical microglial markers and brain levels of the che-
mokine MCP-1 [25]. These findings indicate ethanol and
poly L:C-TLR3 signaling activate NF-kB transcription
consistent with ethanol priming microglia with mild ac-
tivation, perhaps related to induction of HMGB1 and
TLR3, that results in increased poly I:C microglial acti-
vation and induction of proinflammatory genes.

Many neurodegenerative diseases share increased oxi-
dative stress, increased NOX and increased TLR expres-
sion [40]. We have previously found in mice that
neuroinflammatory responses that increase NOX expres-
sion and levels of reactive oxygen species such as super-
oxide are linked to neurodegeneration [26]. Alcohol-
induced neurodegeneration is found in frontal cortex
and hippocampus in rodent models [20] and humans
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[21]. We found increased morphological microglial activa-
tion, NADPH oxidase gp91P"** and superoxide levels, as
well as activated caspase-3 and Fluoro-Jade B markers of
neurodegeneration in both cortex and hippocampal den-
tate gyrus. Ethanol-poly I:C treatment had significantly
higher levels of NOX gp91P"** mRNA, NOX gp91P" + IR
protein, superoxide levels and cell death markers. NOX
expression was co-localized with markers of neurons and
microglia. However, caspase-3 + IR cells and Fluoro-Jade B
markers of cell death were predominantly found in
NeuN + IR neurons. We have found human postmortem
alcoholic brain has increased neuronal expression of NOX
gp91phox+ IR [26]. These studies are consistent with
microglial proinflammatory amplification causing neur-
onal induction of NOX, increasing oxidative stress that
causes neuronal death and neurodegeneration.

To further investigate the role of microglial activation in
neurodegeneration, we studied minocycline and naltrex-
one. Although the exact molecular mechanisms are un-
known, minocycline is well characterized as an inhibitor
of brain microglial activation [43]. Naltrexone is known to
alter neuroinflammatory responses [44,45]. Interestingly,
neuroinflammation appears to be linked to addiction [3].
Systemic endotoxin treatment leads to a delayed persistent
increase in ethanol drinking by mice [57], whereas trans-
genic mice lacking proinflammatory genes show reduced
ethanol drinking [58] and altered acute ethanol motor and
sedative effects [59]. In addition, viral vector siRNA
knock-down of TLR4 in amygdala reduces lever pressing
for alcohol in alcohol-dependent rats [60]. Naloxone,
which is similar to naltrexone, has been reported to block
NADPH oxidase [61]. Naltrexone has been recently found
to block TLR responses [45]. These studies are consistent
with naltrexone having anti-inflammatory effects. Naltrex-
one is known to reduce drinking in both animals and
humans, and is used to treat human alcoholism [62].
Interestingly, minocycline also reduces ethanol drinking in
rats [63]. In the present study, we found both minocycline
and naltrexone reduced ethanol-poly I:C-elicited micro-
glial activation and increased caspase-3 +IR cells. These
findings support the hypothesis that proinflammatory
microglial activation contributes to neurodegeneration.

In summary, the findings presented support a connec-
tion between blood and brain proinflammatory responses,
with the magnitude of peak blood proinflammatory cyto-
kines being reflected in the degree of brain microglial
activation and neuroinflammatory responses. Multiple
mechanisms converge upon microglial activation that
contributes to neurodegeneration (Figure 13). Proinflam-
matory amplification induced neuronal NADPH oxidase,
superoxide formation and increased markers of neuronal
death. Naltrexone and minocycline block microglial acti-
vation and neurodegeneration supporting the role of
microglia contributing to neurodegeneration.
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