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Abstract

Background: Recent clinical observations suggest that certain gut and dietary factors may transiently worsen
symptoms in autism. Propionic acid (PA) is a short chain fatty acid and an important intermediate of cellular
metabolism. Although PA has several beneficial biological effects, its accumulation is neurotoxic.

Methods: Two groups of young Western albino male rats weighing about 45 to 60 grams (approximately 21 days
old) were used in the present study. The first group consisted of oral buffered PA-treated rats that were given a
neurotoxic dose of 250 mg/kg body weight/day for three days, n=eight; the second group of rats were given only
phosphate buffered saline and used as a control. Biochemical parameters representing oxidative stress, energy
metabolism, neuroinflammation, neurotransmission, and apoptosis were investigated in brain homogenates of both
groups.

Results: Biochemical analyses of brain homogenates from PA-treated rats showed an increase in oxidative stress
markers (for example, lipid peroxidation), coupled with a decrease in glutathione (GSH) and glutathione peroxidase
(GPX) and catalase activities. Impaired energy metabolism was ascertained through the decrease of lactate
dehydrogenase and activation of creatine kinase (CK). Elevated IL-6, TNFq, IFNy and heat shock protein 70 (HSP70)
confirmed the neuroinflammatory effect of PA. Moreover, elevation of caspase3 and DNA fragmentation proved the

pro-apoptotic and neurotoxic effect of PA to rat pups

Conclusion: By comparing the results obtained with those from animal models of autism or with clinical data on
the biochemical profile of autistic patients, this study showed that the neurotoxicity of PA as an environmental
factor could play a central role in the etiology of autistic biochemical features.

Introduction

Autism spectrum disorders (ASDs) are a cluster of
related neurodevelopmental disorders characterized by
varying degrees of impaired socialization, reduced
communication, and limited, repetitive, or stereotyped
interests and activities. Patients with ASD are often
reported to suffer from a variety of bowel dysfunctions
and gastrointestinal disturbances [1]. Current estimates
indicate that the prevalence of autism has increased by
more than 10-fold in the last three decades.

The lack of a full understanding of the relationship be-
tween the brain and the behavior of autistic patients has
hindered the development of effective methods for the
diagnosis and management of autism. In fact, a
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significant limiting factor in understanding this relation-
ship lies in the difficulties associated with obtaining
human brain tissues from both normal subjects and
sample patients [2].

Various animal models have been employed to
investigate the environmental factors, core symptoms,
possible causes, and potential treatments of neurodeve-
lopmental disorders. Among the several animal models
so far assayed, the rat model appears to be an excellent
standard experimental system, namely because of the
ample data already available on the genetics and
behavioral phenotyping of various rat strains [3].

There has been a growing interest in the literature on
possible environmental agents involved in the
development of autism, such as chemical toxins, which
could act during critical periods of pre- and early
postnatal development [4].
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Of particular relevance to this argument, propionic
acid (PA) has often been reported to induce a number of
behavioral changes and neuroinflammatory responses in
rats reminiscent of ASD. This dietary short chain fatty
acid is a common food preservative and metabolic end-
product of enteric bacteria in the gut. Although mostly
accumulating in the gut, PA can readily cross the gut-
blood and blood-brain barriers (BBB) and gain access to
the central nervous system (CNS). In the brain, it can
cross cell membranes and accumulate within cells, indu-
cing intracellular acidification [5,6], which may alter

neurotransmitter releases and, ultimately, neuronal
communication and behavior [7,8].
MacFabe et al. [9] showed that intraventricular

infusion of PA can change both brain and behavior in
the laboratory rat in a manner that is consistent with
symptoms of human ASD. The behavioral, neuropatho-
logical and biochemical findings in the MacFabe PA
model provide further support for the hypothesis that
autism may be a systemic metabolic encephalopathic
process affecting the brain. They have also found evi-
dence of reversible impairments in social behavior fol-
lowing PA exposure [10]. The similarities in innate
neuroinflammatory and oxidative stress changes between
their animal model and human ASD cases could repre-
sent similar metabolic or immune-mediated processes
[11] directly or indirectly associated with PA. Of particu-
lar interest are their observations of broad impairments
in glutathione (GSH) and catalase metabolism which
could provide a common mechanism for increased oxi-
dative stress and increased environmental sensitivity to a
variety of environmental compounds [12].

Moreover, there are a series of inherited and acquired
conditions which lead to elevations of PA and other
short chain fatty acids and these are related to develop-
mental delay, seizure disorder and gastrointestinal
symptoms, resembling some aspects of autism [13,14].
Thus, PA may be a putative link between dietary or
enterobacterially derived metabolites along with genetic
predisposition and subsequent features of autism.

Considering the serious concerns expressed over the
alarming rates with which ASDs are increasing through-
out the world and in light of the promising opportunities
that PA administration might bring with regard to the
understanding of these neurodevelopmental disorders,
the present study was undertaken to investigate and
evaluate the neurotoxic effects associated with the oral
administration of PA to rats. PA was chosen for this
study because it has the lowest Km (2.03), higher affinity
to transporters and highest brain uptake index (43.53%)
compared to other short chain fatty acids related to neu-
rodevelopmental disorders. Moreover, propionate was
the only short chain fatty acid which had a lower plasma
concentration and high rate of influx to the brain in
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autistic patients compared to healthy age-matched
controls [15,16]. Oral administration of PA was selected
in an attempt to understand the gut-brain axis hypoth-
esis in PA neurotoxicity and to find biochemical corre-
lates to different autistic features with reference to data
previously reported either for the MacFabe animal model
of autism or clinical findings for children affected with
autism. Accordingly, several biochemical parameters,
related to oxidative stress/antioxidant status, energy
metabolism, neuroinflammation, neurotransmission and
apoptosis were selected for measurement and analysis.

Material and methods

Animals

The experimental assays for this study were performed
on 16 young (approximately 21 days old) male western
albino rats (45 to 60 g). Rats were obtained from the
animal house of the pharmacy college, King Saud
University, and were randomly assigned to two groups of
eight rats each. The first group of rats were given an oral
neurotoxic dose of PA (250 mg/kg body weight/day for
three days; n =eight) [17] and were termed the oral buf-
fered PA-treated group. The second group consisted of
rats to which only phosphate buffered saline was admi-
nistered and were used as a control group (n=eight).
The two groups of rats were individually housed under
controlled temperature (21 + 1°C) with ad libitum access
to food and water. The protocol of the present work was
approved by the Ethics Committee at the King Saud Uni-
versity and all experiments were performed in accord-
ance with the guidelines of the National Animal Care
and Use Committee.

Tissue preparation

At the end of the feeding trials, the rats were anesthe-
tized with carbon dioxide and decapitated. The brain
was removed from the skull and was dissected into small
pieces and homogenized as a whole in 10 times w/v bi-
distilled water and kept at —80°C until further use for
different biochemical analyses.

Biochemical analyses

Measurement of lipid peroxidation

Lipid oxidation was evaluated by measuring the levels of
lipid peroxidation by-products as thiobarbituric acid
reactive substances (TBARS), namely malondialdehyde
(MD), using the method of Ruiz-Larrea et al. [18].
Accordingly, the samples were heated with TBA at low
pH and the formation of a pink chromogen was
measured by absorbance at 532 nm. The concentration
of lipid peroxides was calculated as yumoles/ml using the
extinction coefficient of MD.
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Assay of vitamin C

Assay of vitamin C was performed according to the
method of Jagota and Dani [19]. A quantity of 0.2 ml of
brain homogenates was mixed with 0.8 ml of 10%
trichloroacetic acid (TCA) and incubated in ice for 5
minutes. The samples were then centrifuged for 10
minutes at 3,500 rpm and 4°C. An amount of 1.5 ml
double distilled water was subsequently added to 0.5 ml
of the supernatant. Eventually, 2 ml of Folin-phenol
reagent were added and absorbance was measured at
760 nm after 10 minutes.

Assay of glutathione (GSH)

GSH content was determined according to the method
described by Beutler et al. [20] using 5,5'-dithiobis 2-
nitrobenzoic acid (DTNB) with sulthydryl compounds to
produce a relatively stable yellow color.

Assay of glutathione peroxidase (GPX)

GPX was assayed according to the method of Paglia and
Valentine [21]. In this assay, cumene hydroperoxide is
used as the peroxide substrate (ROOH) and glutathione
reductase (GSSG-R) and NADPH (f — nicotinamide ad-
enine dinucleotide phosphate, reduced) are included in
the reaction mixture. The formation of oxidized glutathi-
one (GSSG) catalyzed by GPX is coupled to the recycling
of GSSG back to GSH using GSSG-R. NADPH is
oxidized to NADP'. The change in absorbance at
340 nm due to NADPH oxidation is monitored and is in-
dicative of GPX activity.

Assay of catalase

The total volume of the reaction mixture was 3 mL. It
contained 1.5 mL of 0.2 M sodium phosphate buffer pH
7.2, 1.2 mL of 0.5 mM hydrogen peroxide and enzyme.
The reaction was started by adding hydrogen peroxide
(H305), and the rate of change in absorbance was mea-
sured at 240 nm for two minutes [22].Values were
expressed as umoles of H,O, dissociated/minute/dL
brain homogenates, that is, U/dL.

Assay of CK
CK was determined using the CK NSC kit for its simpli-
city as a product of NSC Human, Germany [23].

Assay of lactate dehydrogenase (LDH)

The quantitative determination of LDH in the brain
homogenates was performed using the lactate-to-pyru-
vate kinetic method described by Henry et al. [24].

Assay of TNFa

TNFa was measured using a mouse TNFa ELISA kit
(Hycult Biotech, Uden, Netherlands. The antibody
reacts with the natural TNFa of the rats and
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identifies membrane as well as receptor-bound
TNFa. The TNFa trimer interacts with either of the
two types of TNE-R, leading to receptor cross-link-
ing. One unit of Hycult Biotech Mouse TNFa
approximates the bioactivity of 16 units of human
TNFa according to the standard L929 cytotoxicity
assays for TNFa prepared by the World Health
Organization (WHO).

Assay of Caspase3

Caspase3 was measured using an ELISA kit, a prod-
uct of Cusabio (Cusabio, Wuhan, China). The micro-
titer plate provided in this kit was pre-coated with
an antibody specific for caspase3. Standards or sam-
ples were then added to the appropriate microtiter
plate wells with a biotin-conjugated antibody prepar-
ation specific for caspase3. After that, avidin conju-
gated to horseradish peroxidase (HRP) was added to
each microplate well and incubated. A TMB (3,3',5,5'
tetramethyl-benzidine) substrate solution was then
added to each well. Only the wells that contained
caspase3, biotin-conjugated antibody, and enzyme-
conjugated avidin would exhibit a change in color.
The enzyme-substrate reaction was terminated by the
addition of a sulfuric acid solution and color change
was measured spectrophotometrically at a wavelength
of 450 nm +2 nm. The concentration of caspase3 in
the samples was then determined by comparing the
optical density (O.D.) of the samples to the standard
curve.

Assay of IL-6

IL-6 was assayed using a Quantikine ELISA kit (R & D
Systems, Minneapolis, MN, USA. A microplate was pre-
coated with a monoclonal antibody specific for rat IL-6.
Fifty microliters (50uL) of each standard, control, or
sample were placed in separate wells. The reagent was
mixed by gently tapping the plate frame for one minute
after being covered with the adhesive strip provided. The
plate was incubated for two hours at room temperature
and any rat IL-6 present was bound by the immobilized
antibody.

After washing away unbound substances, an enzyme-
linked polyclonal antibody specific for rat IL-6 was added
to the wells. Following a subsequent wash step to remove
unbound antibody-enzyme reagents, 100 pL of substrate
solution was added to each well and the plate was incu-
bated for 30 minutes at room temperature. The enzyme
reaction yielded a blue product that turned yellow when
the stop solution was added. The intensity measured for
the color was in proportion to the amount of rat IL-6
bound in the initial step. The sample values were then
read off the standard curve.
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Assay of gamma amino-butyric acid (GABA)

GABA was quantitatively determined using the ELISA
immunoassay kit from ALPCO Diagnostics (Salem, NH,
USA). Volumes of 300 pL of diluted standards, controls
and undiluted samples were placed into the appropriate
wells of the extraction plate. A total of 300 uL of the
diluent was added to each well. The wells were then cov-
ered with adhesive foils and shaken for 30 minutes at
room temperature (20 to 25°C) on a shaker (600 rpm).
Two washing cycles were performed, after which 250 pL
elution buffers were introduced into the appropriate
wells of the extraction plate, covered, and then shaken. A
total of 100 pL of the extract was then used for the
subsequent derivatization procedure. An amount of 10
pL of NaOH was added to each well, which was followed
by the addition of 50 pL of the equalizing reagent
(freshly prepared before the assay). The wells were then
shaken for one minute on a shaker set at 600 rpm. A vol-
ume of 10 uL of the D-reagent was added to each well,
which was then incubated for two hours (20 to 25°C).
An amount of 150 pL of the Q-buffer was then added to
the wells, which were incubated for ten minutes at room
temperature (20 to 25°C) on a shaker (approximately
600 rpm). Volumes of 25 pL of the derivatives were then
used for subsequent ELISA assays.

Assay of serotonin

Serotonin was measured using an ELISA kit from
Immuno-Biological  Laboratories (IBL, Hamburg,
Germany). Brain homogenate preparation (derivatization
of serotonin to N-acylserotonin) was part of the sample
dilution and was achieved by the incubation of the re-
spective sample with the acylation reagent. The assay
procedure followed the competitive ELISA protocols
whereby competition takes place between biotinylated
and non-biotinylated antigen for a fixed number of anti-
body binding sites. The amount of biotinylated antigens
bound to the antibody was inversely proportional to the
N-acylserotonin concentration of the sample. When the
system was in equilibrium, the free biotinylated antigens
were removed by a washing step. The antibody-bound
biotinylated antigens were determined using anti-biotin
alkaline phosphatase as a marker and p-nitrophenyl
phosphate as a substrate. The unknown samples were
quantified by comparing enzymatic activity with refer-
ence to a response curve for known standards.

Dopamine assay

Dopamine was extracted by using a cis-diol-specific
affinity gel, acylated and then derivatized enzymatically.
Quantitavive assay was performed using an ELISA kit, a
product of Immuno Biological Laboratories (IBL).
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Assay of IFNy

IFNy was measured using an ELISA kit, a product of
Thermo Scientific (Rockford, IL, USA) according to the
manufacturer’s instructions. This assay employs a quanti-
tative sandwich enzyme immunoassay technique that
measures IFNy in less than five hours. A polyclonal anti-
body specific for human IFNy has been pre-coated onto
a 96-well microplate with removable strips. IFNy in stan-
dards and samples is sandwiched by the immobilized
antibody and biotinylated polyclonal antibody specific for
IENy, which is recognized by a streptavidin-peroxidase
conjugate. All unbound material is then washed away
and a peroxidase enzyme substrate is added. The color
development is stopped and the intensity of the color is
measured at 550 nm and subtracted from absorbance at
450 nm. The minimum level of rat IFNy detected by this
product is less than 2 pg/ml.

Phospholipids measurement

Briefly, 50 pl of brain homogenate was diluted with
750 ul deionized water followed by 2 ml of methanol and
1 ml of chloroform. The mixture was stirred (Rotary
mixer 34526, Snijders) for 15 minutes and centrifuged
for five minutes at 4,000 rpm [25]. Phospholipid separ-
ation was performed using a Kaneur Maxi Star HPLC
system with four solvent lines and a degasser SEDEX 55
evaporating light detector (SEDEX 55 Lichtstreu
detector, S.E.D.E.E., Sedere, Alfortville, France) coupled
with Apex M625 software (Autochrom, Milford, HA,
USA). High purity nitrogen (N,) was used as a nebuliz-
ing gas at a flow rate of 4 L/minute, and a temperature
of 40°C. The gain was set at 8 and 2.0 bar N,.

A 125x4.0 mm Si-60 column with 5 pum particle
diameter (Lichrosher Connecticut, USA) was used. The
elution program was a linear gradient with 80:19.5:0.5
(V/V) chloroform: methanol: water: ammonia (NHj) at
22 minutes. The column was allowed to equilibrate until
the next injection at 27 minutes. The injection volume
was 50 pl.

Assay of heat shock protein 70 (HSP70)

HSP70 was measured in homogenates of brain cortex
and medulla using an ELISA kit, product of Uscn Life
Science Inc. Wuhan, China according to the manufac-
turer’s instructions. The microtiter plate provided in this
kit has been pre-coated with an antibody specific for
HSP70. Standards or samples are then added to the ap-
propriate microtiter plate wells with a biotin-conjugated
polyclonal antibody preparation specific for HSP70.
Next, avidin conjugated to HRP is added to each micro-
plate well and incubated. Then, a TMB substrate solution
is added to each well. Only those wells that contain
HSP70, biotin-conjugated antibody and enzyme-conju-
gated avidin will exhibit a change in color. The enzyme-
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substrate reaction is terminated by the addition of a
sulfuric acid solution and the color change is measured
spectrophotometrically at a wavelength of 450 nm + 10
nm. The concentration of HSP70 in the samples is then
determined by comparing the O.D. of the samples to the
standard curve. The minimum detectable level of rat
HSP70 detected is less than 0.045 ng/ml.

Comet DNA assay

Brain tissues were collected from the rat samples, homo-
genized in 0.075 M NaCl and 0.024 M ethylenediamine-
tetraacetic acid (EDTA) buffer, pH 7.5, at a ratio of 1 g of
tissue to 1 ml of buffer, and then cooled to 4°C. Volumes
of 6 pl of brain homogenate were suspended in 100 ul of
0.5% low-melting agarose (LMA) (Sigma-Aldrich, St
Louis, MA, USA) and placed onto microscope slides that
were cleaned and coated with 300 pl of 0.6% normal
melting point agarose (NMP) agarose beforehand. After
solidification on ice for 10 minutes, the slides were cov-
ered with 0.5% low melting point (LMP) agarose. Once
the agarose gel was solidified, the slides were immersed
for one hour in an ice-cold lysis solution, consisting of
100 mM Na,EDTA, 2.5 M NaCl, 10 mM Tris—HCI, and
1% sodium sarcosinate, which was adjusted to pH 10,
using 1% Triton X-100 and 10% dimethyl sulfoxide
(DMSO) that were added immediately prior to use. Be-
fore electrophoresis, the slides were removed from the
lysing solution and placed for 20 minutes in a horizontal
electrophoresis unit (near the anode) that was filled with
an alkaline buffer to allow the unwinding of DNA and to
express alkali-labile damage. The electrophoresis alkaline
solution consisted of 1 mM Na,EDTA and 300 mM
NaOH, pH 13. After the unwinding of DNA, electro-
phoresis was carried out in the freshly prepared alkaline
solution for 20 minutes at 25 V (300 mA). Electrophor-
esis at high pH resulted in structures resembling comets,
as observed by fluorescence microscopy; the intensity of
the comet tail relative to the head reflected the number
of DNA breaks. Afterwards, the slides were neutralized
by adding Tris buffer (pH 7.5), stained with 30 ml of eth-
idium bromide (Sigma-Aldrich, St Louis, MA, USA)
(20 mg/L), and then covered and stored in sealed boxes
at 4°C for further analysis.

All preparation steps were performed under dimmed
light to prevent additional DNA damage. Images of 100
randomly selected cells (50 counts on each duplicate
slide) were analyzed for each sample. For each group, a
total of 500 cells were analyzed under a Leitz Orthoplan
epifluorescence  microscope  (magnification  250x)
equipped with an excitation filter of 515 to 560 nm and
a barrier filter of 590 nm. The microscope was con-
nected through a camera to a computer-based image
analysis system (Comet Assay IV software, Perspective
Instruments).
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Comets were randomly captured at a constant depth of
the gel, avoiding the edges of the gel, occasional dead
cells, and superimposed comets. DNA damage was
measured as tail length (TL = distance of DNA migration
from the center of the body of the nuclear core), and tail
intensity DNA (TI=% of genomic DNA that migrated
during the electrophoresis from the nuclear core to the
tail). By presenting all three parameters together, more
information could be obtained on the extent of DNA
damage.

Statistical analysis

The data were analyzed using the statistical package for
the social sciences (SPSS, Chicago, IL, USA). The results
were expressed as mean + standard error of the mean
(SEM). All statistical comparisons between the control
and PA-treated rat groups were performed using the
one-way analysis of variance (ANOVA) test complemen-
ted with the Dunnett test for multiple comparisons.
Significance was assigned at the level of P <0.05.
Receiver operating characteristics curve (ROC) analysis
was performed. Area under the curve (AUC), cutoff
values, and degree of specificity and sensitivity were
calculated.

Results

Results are presented as mean+SEM and percentage
change of at least six independent measurements.
Table 1 presents the mean + SEM of the GSH (ug/ml),
MD (pmoles/ml) and vitamin C (pg/ml) concentrations,
and catalase (U/dl) and GPX (U/100 mg) activities in the
brain homogenates of the two groups of rats. Compared
to control groups, the PA-treated rats exhibited a signifi-
cant increase in MD, with a concomitant decrease of
catalase, GSH, Vitamin C, and GPX (P <0.05).

Table 1 Mean + SEM of GSH (pg/ml), MD (umoles/ml),
vitamin C (ug/ml) concentrations and catalase (U/dl) and
GPX (U/100 mg) activities in the brain homogenates of
the two groups of rats

Parameters Groups Min. Max. Mean+SEM P value

GSH(pg/ml) Control 4981 768 602+305 005
PA 2204 6796  44.84+481

GPX Control 405 628 517+03 0.01
PA 2.31 2.88 249+0.11

MD(pumoles/ml) Control  0.04 0.11 0.06+0.007  0.001
PA 008 042 0.18+0.03

Vitamin C(ug/ml) Control 1504 2389 2051£1.31 0.011
PA 6.57 18.88 12.7+1.45

Catalase(U/dl) Control  3.08 6.08 442+033 <0.001
PA 2.03 87 3.86+0.84

GPX glutathione peroxidase; GSH glutathione; MD malondialdehyde; max
maximum; min minimum; SEM standard error of the mean.
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Table 2 Mean + SEM of brain CK (U/L), and LDH (pmoles/
L) concentrations in the two groups of rats

Parameters Groups Min. Max. Mean + SEM P value
CK Control 4485 84.72 64.79+5.14

PA 16447 45344 29431+3644  <0.001
LDH Control 178925 250944 2126.18 £108.05

PA 137062 19836 1519.76 £839

CK creatine kinase; LDH lactate dehydrogenase; max maximum; min minimum;
PA propionic acid; SEM standard error of the mean.

Table 2 shows a significant elevation of CK (P <0.001)
activity and a remarkable decrease in brain LDH activity
level in the PA-treated group compared to controls.

Table 3 demonstrates that while PA and acetic acid
were significantly elevated (400.55% and 951% increases,
respectively), the long-chain polyunsaturated fatty acids
(LC-PUFA) were significantly decreased in the brain
homogenates of the PA-treated rats compared to those
of the untreated controls (P <0.05). Docosahexanoic acid
(DHA), docosapentaenoic (clupanodonic), eicosapenta-
enoic acid (EPA), arachidonic acid (AA), and docosapen-
taenoic (Osbond), linolenic and y-linolenic acids had the
most significantly reduced levels recorded showing

Table 3 Mean + SEM and percentage change of selective
short-chain and long-chain polyunsaturated fatty acids
(LC-PUFA) in the brain homogenates of the two groups of
rats. Significant level at p <0.05

Fatty acid Groups Control PA P value
Acetic Mean+SEM  0.02+0.003 0.07+0.007 0001
%change 100.00 45544
PA Mean+SEM  0.01+0.003 0.13+0.01
%change 100.00 1051.32
18:2-n6Linoleic Mean+SEM 264 +0.1 1.79+40.1
%change 100.00 74.88
18:3-n6y-linolenic Mean+SEM 133+0.06 1.11+0056 0.065
%change 100.00 83.15
AA Mean +SEM  0.56+0.028 0.35+0.021 0.004
%change 100.00 61.89
EPA Mean+SEM  034+004 0.16+0.025
%change 100.00 4738
22:5-n3 Mean+SEM 1.01+007 046+0.025
Docosapentaenoic o, .. ." 10000 4505 <0.001
(clupanodonic)
22:5-n6 Mean+SEM  133+£0.16 093 +0.067
:’o"s‘l;’::z)e“‘ae“i‘ %change 100,00 6998
DHA Mean +SEM 0.4 +0.05 0.16+0.007
% change 100.00 40.2
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Table 4 Mean + SEM of PE, PS, and PC levels in the brain
homogenates of the two groups of rats. Significant level
at P <0.005

Parameters Groups Min. Max. Mean + SEM P value
PE Control 0.13 0.19 0.17+£0.01
PA 0.05 0.1 0.09+0.007
PS Control 0.28 0.35 031£0.0M11 <0.001
PA 0.06 0.18 0.12+0.018
PC Control 382 482 446+0.16
PA 1.05 2.74 197+0.18

PA propionic acid; PC phosphatidylcholine; PE phosphatidylethanolamine; PS
phosphatidylserine; Max maximum; Min minimum; SEM standard error of the
mean.

percentage decreases of 59.8, 54.95, 56.62, 38.11, 31.02,
25.22 and 16.85%, respectively.

Data presented in Table 4 show clearly that the phos-
pholipids surveyed in the present work (phosphatidy-
lethanolamine (PE), phosphatidylserine (PS), and
phosphatidylcholine (PC)) were significantly lower in the
brain homogenates of PA-treated rats compared to the
untreated control group. Significant level at P <0.005

Table 5 presents comparison concentrations of
caspase3 (pg/ml), IL-6 (pg/ml), TNFa (pg/ml), INFy (ng/
100 mg), and HSP70 (ng/100 mg) in the brain homoge-
nates of the two groups of rats. The data clearly demon-
strate the elevation of these parameters in PA-treated
rats compared to the untreated control group.

GABA, serotonin, dopamine, adrenaline, and nor-
adrenaline (expressed in ng/10 mg) concentrations were
also measured in the brain homogenates of the two
groups of rats and results are presented in Table 6.
Lower concentrations of the five neurotransmitters in
PA- treated rats can be easily observed in the table.

Table 5 Caspase3 (pg/ml), IL6 (pg/ml), TNFa (pg/ml), INFy
(ng/100 mg), and HSP70 (ng/100 mg) in the brain
homogenates of the two groups of rats

Parameters  Groups  Min. Max. Mean+SEM P value
Caspase3 Control 11034 12550  11937+£232  <0.001
PA 13797 17231 15444 +43
IL-6 Control 12133 14008  129.03+£2.85
PA 12934 15937  14352+336
TNFa Control 111.01 12519 11939+2.16
PA 12573 13932 13191£155
INFy Control 8247 96.52 90.01+1.82
PA 13637 15204 141594222 0.01
HSP70 Control 30.28 3643 32.66+0.89
PA 54.28 60.05 57694091

AA arachidonic acid; DHA docosahexanoic acid; EPA eicosapentaenoic acid; PA
propionic acid; SEM standard error of the mean.

Max maximum; Min minimum; PA propionic acid; SEM standard error of the
mean.
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Table 6 GABA, serotonin, dopamine, adrenaline, and nor-
adrenaline (expressed in ng/10 mg) levels in the brain
homogenates of the two groups of rats

Parameters Groups Min. Max. Mean+SEM P value
GABA Control 9542 10503 10045+162  <0.001
PA 7158 9063 79.09+2.05
Serotonin Control 522 832 6.99 +0.46
PA 3.10 558 417+£03
Dopamine Control 1537 1998 17911067 0.007
PA 6.88 17.63 1256+£1.19
Adrenaline Control 5138 6563 598+0.26
PA 2128 3655 283+0.27 <0.01
Noradrenaline Control 2419 3575 506+0.28
PA 4973 5113 283+0.22

GABA gamma aminobutyric acid; Max maximum; Min minimum; PA propionic
acid; SEM standard error of the mean.

In this study, the DNA damage incurred by treatment
with PA is presented in Table 7 and Figure 1 as tailed
(%), tail length (um), and tail moment of the two groups
of rats. It can be seen that there was a significant
increase in the tail length (5.83 pm increase), tail
moment (40 pum increase) and DNA fragmentation in
PA-treated rats compared to the untreated controls

Table 8 demonstrates the ROC analysis for the mea-
sured parameters showing AUC, specificity and sensitiv-
ity. Of the 32 studied parameters, only 11 parameters
(listed in Table 8) show remarkably high sensitivity and
specificity (>80%) as measured by ROC analysis. AUC
values range from 0.688 to 1.

Figures 2 and 3 shows the Pearson’s correlations of the
most significant positive and negative correlated vari-
ables with best fit line curve. Out of the 402 Pearson’s
correlations between the 32 measured parameters, only
those representing the significant correlations between
MD and the other parameters were selected to be
presented.

Table 7 Tailed (%), Tail length (pm), and tail moment of
the two groups of rats

Parameters Groups  Min. Max. Mean+SEM P value
Tailed% Control 2% 5% 333+054
PA 16% 20%  18.00+£0.71
Tail length (um) Control  0.79 124 0.97+0.08 <0.01
PA 6.05 752 6.80+0.26
Tail moment Control 064 1.66 0.98+0.21
PA 37264 4715 415118

Max maximum; Min minimum; PA propionic acid; SEM standard error of the
mean.
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Discussion

Several parallels have explicitly been drawn between
mechanisms of neurodevelopmental diseases and envir-
onmental neurotoxicity in recent research. In fact, the
literature provides ample evidence for interrelated path-
ways that result in neuronal cell death. The challenges
for the early intervention and prevention of such debili-
tating conditions include the subclinical detection of
insult in populations at risk and in defining the specific
neural targets involved in the process. In this context,
experimental studies on animal models can provide valu-
able data as to the determination of regional and cellular
vulnerability to particular neurodevelopmental diseases
and the identification and management of clinical
biomarkers.

Oxidative stress markers

The findings of the present study revealed a significant
increase in MD, a significant marker of oxidative stress,
with a concomitant decrease of catalase, GSH and GPX
in the brain homogenates of the PA-treated rats, which
corroborated the role of oxidative stress in the etiology
of autism (Table 1). This latter finding is in accordance
with previously described results reporting that while
red-cell lipoxidation is twice as high among autistic
children than in age-matched controls, GSH, GPX and
catalase are significantly lower [26,27].

Zoroglu et al. 2004 attributed antioxidant decreases to
lower production or greater consumption rates, implying
greater vulnerability of the autistic brain to oxidants.
The findings are also in line with a recent study on brain
regions that reported a significant increase of lipid
hydroperoxide levels in the cerebellum and temporal
cortex of autistic children [28]. Similar results were also
recorded for the animal model of MacFabe et al. [9]
which showed elevated lipid peroxides and lower GSH
levels, GPX and GRX activities, together with typical
cognitive disability, repetitive behavior, object-directed
behavior, and social behavior in rats to which PA was
administered intraventricularly [29].

The results also revealed an increase in CK and a
decrease in LDH, two enzymes related to energy metab-
olism (Table 2). These results are in line with the find-
ings of a previous study by Al-Mosalim et al. [30] that
reported lower ATP levels in red blood cells together
with elevated lactate and CK activities in the plasma of
Saudi autistic children compared to age-matched
controls. Furthermore, the activation of brain CK
observed in the present study could be easily related to
the significant increases in the activities of Na*/K*
ATPase and Ca**/Mg>* ATPase and the marked decrease
in the expression of mitochondrial electron transport
chain (ETC) complexes in different regions of the brain
of autistic subjects compared with their age-matched
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A

Figure 1 Measure of PA-induced DNA damage by comet assay (A): Control group of rats, (B): PA treated group of rats.

controls and suggests the contribution of these enzymes
to the abnormal energy circuit functioning in autism
[28].

Lipid profile markers

There is growing interest in recent research on the po-
tential roles of the n-3 polyunsaturated fatty acid (PUFA)
docosahexanoic acid (DHA) and precursor eicosapenta-
enoic acid (EPA) with regard to brain structure, function,
and mental health in human beings [31-33]. DHA is the
most abundant PUFA in brain membrane phospholipids,
which is indicative of its role in membrane fluidity and
associated metabolic and neural activities. In fact, DHA
is particularly concentrated at neural synapses, sites of
neurotransmitter signaling. Omega-6 PUFA arachidonic
acid (AA) is also abundant in the brain, reflecting a key
role in brain structure and function. Likewise, the AA
precursor, gamma-linolenic acid (yLA), and n-3 DHA
precursor EPA are all considered to play key roles in
brain functioning especially via the synthesis of eicosa-
noids that have anti-inflammatory, anti-thrombotic, and
vasodilatory properties [33]. As far as the present study
is concerned, the findings indicated similar correlations
between the levels of PA and acetic acids as short chain
fatty acids and long chain (LC)-PUFA in the brain homo-
genates of both the treated and untreated groups of rats
(Table 3). It could be easily observed that while PA and
acetic acids were significantly elevated, the LC-PUFA
were significantly decreased in the brain homogenates of
the PA-treated rats compared to those of the untreated
controls. Based on this observation, the depletion
recorded for most LC-PUFA levels could presumably be
attributed to the brain dysfunction in the autistic
patients and suggests that dietary supplementation with
LC-PUFA might assist in the management of the child-
hood behavioral and learning difficulties related to
autism.

Furthermore, and considering the fact that the brain is
often reported to be capable of synthesizing only a few
fatty acids and that most fatty acids must, accordingly,
pass through the blood into the brain [34], the data
obtained in this respect could be easily linked to autism.
In fact, El-Ansary et al. [16] previously provided plausible
links that related the occurrence of lower PA in the
plasma of autistic patients to elevated levels of PA in
their brain. They attributed the lower plasma PA to the
high rate of influx from blood to brain. In fact, and
compared to other fatty acids, propionate was previously
reported to cross the BBB with a brain uptake index of
43.53 and a low Km value of 2.03 [15]. Since the lower
the Km, the higher the affinity of the transporters for the
substrates, then an uptake index of 43.53% and a Km
value of 2.03 are enough to facilitate the penetration of
propionate into the brain cell, which could explain the
elevation of PA in the brain homogenates of the treated
rats. In fact, the data obtained from the intraventricular
administration of PA to rats, such as those presented in
the animal model of MacFabe et al. [9], could provide
the means to model a number of aspects pertaining to
human ASD in rats. Data generated from animal model
studies in which PA is orally administered might, on the
other hand, provide evidence for the importance of the
gut-to-brain pathway in the etiopathology of autism and
open new opportunities for the development of feasible
pharmaceutical and/or nutritional approaches for the
treatment and prevention of autism.

Phospholipids enriched in unsaturated fatty acids
(phosphatidylethanolamine (PE), phosphatidylserine (PS),
and phosphatidylcholine (PC)) have often been reported
to be essential for the normal neurological function of
the brain. In fact, neurodegeneration was previously
attributed to abnormal metabolism of phospholipids in
the brain [35]. The composition of erythrocyte mem-
brane phospholipid has also been shown to correlate



El-Ansary et al. Journal of Neuroinflammation 2012, 9:74
http://www.jneuroinflammation.com/content/9/1/74

Table 8 ROC analysis of measured parameters in the PA-
treated group of rats

Parameter Area under Cutoff Sensitivity % Specificity %
the curve value
GSH (ug/ml) 0.844 7012 100.0% 25.0%
GPX (U/100 mg) 1.000 6.03 100.0% 20.0%
MD 0.984 0.09 87.5% 87.5%
Vitamin C levels 0.944 24.23 100.0% 16.7%
in brain
Catalase 0.688 536 85.7% 12.5%
CK (U/L) 1.000 79.32 100.0% 80.0%
LDH (umoles/L) 0.944 2431.78 100.0% 16.7%
Acetic acid 1.000 0.02 100.0% 40.0%
PA 1.000 0.02 100.0% 80.0%
18:2-n6 (Linoleic) 0959 292 100.0% 14.3%
18:3-n6 (v -linolenic) 0.847 151 100.0% 14.3%
AA 1.000 0.64 100.0% 14.3%
EPA 1.000 0.665 100.0% 100%
22:5-n3 1.000 0.635 100.0% 100%
Docosapentaenoic
(clupanodonic)
22:5-n6 0.959 1.49 100.0% 14.3%
Docosapentaenoic
(Osbond)
DHA 1.000 044 100.0% 14.3%
PE 1.000 0.19 100.0% 25.0%
PS 1.000 034 100.0% 25.0%
PC 1.000 4.89 100.0% 25.0%
Caspase3 1.000 12545 100.0% 75.0%
IL-6 0917 13648 66.7% 75.0%
TNFa 1.000 125.03 100.0% 100.0%
INFy 1.000 95.15 100.0% 80.0%
HSP70 1.000 35.19 100.0% 80.0%
GABA 1.000 93.025 100.0% 100.0%
Serotonin 0.944 8.19 100.0% 100%
Dopamine 0.972 19.69 100.0% 25.0%
Adrenaline 1.000 6.65 100.0% 33.3%
Noradrenaline 1.000 513 100.0% 333%
Tailed% 1.000 4.70 100.0% 66.7%
Tail length (um) 1.000 1.18 100.0% 66.7%
Tail moment 1.000 1.51 100.0% 66.7%

AA arachidonic acid; CK creatine kinase; DHA docosahexanoic acid; EPA
eicosapentaenoic acid; GABA gamma aminobutyric acid; GPX glutathione
peroxidase; GSH glutathione; LDH lactate dehydrogenase; MD
malondialdehyde; PA propionic acid; PC phosphatidylcholine; PE
phosphatidylethanolamine; PS phosphatidylserine; ROC receiver operating
characteristics.

with brain phospholipid composition [36] and to be a
potentially useful marker for neurological diseases
[37,38]. The phospholipids surveyed in the present work,
namely PE, PS, and PC, were significantly lower in the
brain homogenates of PA-treated rats than in those of
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the untreated control group (Table 4). This could be
attributed to a number of autistic features particularly
those related to oxidative stress and inflammatory
responses, two mechanisms that have often been
reported to play critical roles in the pathophysiology of
autism. This result is also in line with the findings previ-
ously reported by Pandey et al. [39] showing that omega-
6 phospholipids, such as PC, exhibited anti-inflammatory
properties through the inhibition of TNFa and H,O,-
induced mitogen-activated protein kinase (MAPK) in the
neuronal cell line SH-SY5Y and prevented the phosphor-
ylation and activation of nuclear factor-kappa B (NF-kap-
paB). The significant depletion of brain PE, PC, and PS
in the brain homogenates of PA-treated rats is also in
agreement with the findings recently reported by El-
Ansary et al. [40] who described a similar depletion in
terms of those phospholipids in the plasma of autistic
patients compared to age-matched controls. These
depletions of brain phospholipids, as well as the implied
contribution of PA neurotoxicity in the etiopathology of
autism, are also consistent with the hypothesis previously
advanced by Brown and Austin [41] that proposed dysre-
gulated phospholipid metabolism as the underlying
biological component of autism.

Neuroinflammation related markers

Several reports in the literature suggest that a combin-
ation of environmental and, possibly, in utero and auto-
immune risk factors or CNS localized inflammation may
contribute to the pathogenesis of ASD [42-44]. The find-
ings of the present study clearly demonstrate the eleva-
tion of IL-6, TNFa, and IFNy in the brain homogenates
of PA-treated rats (Table 5). This could provide support
for the contribution of PA neurotoxicity, as an environ-
mental factor and metabolic product of enteric bacteria,
to the pathogenesis of autism, which is in line with the
findings reported in several clinical studies related to
autistic brain cytokines. Li et al. [45] has, for instance,
developed a flow cytometry method (multiplexed bead
analysis) to measure cytokine levels in brain (cerebral
cortex) extracts. They showed that proinflammatory
cytokines (TNFa, IL-6, and granulocyte macrophage col-
ony-stimulating factor), Thl cytokine (IFNy), and che-
mokine (IL-8) were significantly increased in the brains
of ASD patients compared to those of controls which
could, presumably, suggest a conserved function of PA in
the etiology of autistic features. A recent study by
Ashood et al. [46] reported that, compared to age-
matched typically developing children and children with
developmental disabilities other than autism, autistic
children were noted to undergo increases in the cytokine
levels that were associated with more impaired commu-
nication and aberrant behaviors. Likewise, the neuroin-
flammation recorded for the group of rats to which PA
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Figure 2 Pearson’s correlations of the most significant positive and negative correlated variables with best fit line curve.
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was orally administered is consistent with the findings of
a recent study by MacFabe et al. [29] which showed,
through the immunohistochemical analysis of brain tis-
sues from intracerebroventricularly PA-injected rats, a
remarkable reactive astrogliosis and activated microglia,
thus providing evidence for an innate neuroinflammatory
response.

Neurotransmission related markers

Multiple lines of evidence have suggested that the
GABAergic system is disrupted in the brains of indivi-
duals with autism and that altered inhibition within the
network is likely to influence the ability to perceive emo-
tional expressions [47]. In fact, the findings of the
present work revealed marked decreases in the GABA,
serotonin, and dopamine levels in the brain homogenates
of PA-treated rats. The decrease recorded for brain sero-
tonin and dopamine is, indeed, in disagreement with a
previous study by Narita et al. [48] which reported an in-
crease in the hippocampal serotonin and frontal cortex
dopamine levels of rats to which thalidomide and val-
proic acid were administered as two potential autism-in-
ducing teratogens. This discrepancy could be attributed
to age-related differences. In fact, while the animals in
the work of Narita et al. [48] were given those two tera-
togens on embryonic days (E)2, E4, E7, E9, and E11, the
present study experimented with 21-day-old rat pups.
Similar decreases were previously reported in several im-
aging studies on serotonin transporter binding or trypto-
phan retention in autistic patients, such as the work of
Azmitia et al. [49] which reported on a decrease in the
brain serotonin system of autistic patients and provided
immunocytochemical evidence for an increase in the 5-
hydroxytryptophan (5-HT) axons (immunoreactive to 5-
HT transporter) of postmortem brain tissues taken from
2.8- to 29-year-old autistic donors compared to healthy
controls. In autistic donors eight years of age and older,
several types of dystrophic 5-HT axons were detected in
the termination fields [50]. Winter et al. [51] have also
reported a similar decrease in serotonin and dopamine
following prenatal viral infection, potentially modeling
disruptions that occur in patients with schizophrenia and
autism.

The decrease recorded in the present study with regard
to dopamine is also consistent with the earlier study of
Garnier et al. [52] which registered elevated dopamine
hydroxylase and homovanillic acid (HVA) in autistic
children and reported the involvement of dopamine
dysfunction in the production of autistic symptoms.
Finally, the observed reduction in adrenaline and
noradrenaline is consistent with the recorded decrease in
dopamine, as a vital neurotransmitter for normal func-
tions in the brain and serves as a precursor of both [53].
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Pro-apoptosis related markers

Table 7 demonstrates elevated levels of caspase-3, a pro-
apoptotic marker, and HSP70 as a stress-induced protein
in brain homogenates of PA-treated rats compared to
controls. A similar increase in caspase-3 has recently
been reported by Olczak et al. [54] who provided evi-
dence for an increase of caspase-3 in developing rat
brains as neurotoxic effects of thimerosal, a mercurial
compound involved in the etiopathology of autism. This
rise could be attributed to mitochondrial dysfunction,
disruption of the BBB, and/or apoptosis, which are
neurotoxic markers of PA. Stao et al. [55] reported that
BBB disruption is an early event that is often followed by
increased HSP70 expression and apoptosis. They specu-
late that 3-nitropropionic acid damages endothelial cells,
leading to vasogenic edema and apoptosis. The findings
of the present work seem to corroborate such specula-
tion, giving evidence for a highly significant increase in
the tail length, tail moment (comet DNA assay), and
DNA fragmentation in PA-treated rats compared to the
untreated controls (Table 7 and Figure 1).

Of the 402 Pearson’s correlations between the 32 mea-
sured parameters, only those representing the significant
correlations between MD as a marker of oxidative stress,
a major mechanism of PA neurotoxicity, and the other
parameters are shown in Figures 2 and 3. It can be easily
noticed that there are positive associations between brain
MD and short chain fatty acids (PA and acetic acid),
proinflammatory markers (TNFa, INFy, IL-6, and
HSP70) and pro-apoptotic markers (caspase3, DNA tail
length and moment). Negative correlations were
observed between MD and GPX, GSH, long chain fatty
acids and neurotransmitters (GABA, 5-HT, dopamine,
adrenaline and nor-adrenaline). This may suggest that
increased oxidative stress, a status recently reported to
exert both etiologic and clinical significance in autism,
[56] is the most important mechanism of PA
neurotoxicity.

Of the 32 studied parameters, only 11 show remark-
ably high sensitivity and specificity (>80%) as measured
by ROC analysis (data not shown). AUC values of (0.688
to 1) are statistically satisfactory to suggest these para-
meters (listed in Table 8) as markers of PA neurotoxicity.

Overall, the suggested etiology of autistic features in
rats orally administered PA, as were the subjects of the
present study could find support in the most recent
study of Ossenkopp et al. [57] which showed that
500 mg/kg intraperitoneal administration of PA could
produce both conditioned taste avoidance and condi-
tioned place avoidance in rats as two autistic behaviors.
Further, it provided ample evidence for the conserved
neurotoxic effects of PA during the development of rat
brains, thus suggesting that this enteric bacterial toxin
and commercialized food additive can be considered as a
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significant epigenetic component that may be contribut-
ing to the alarming rates with which autism is increasing.
Moreover, the orally administered PA used in the present
study could point to connections between the gut-to-
brain axis and the pathogenesis of autism and, in turn, to
the potential promising opportunities that those links
may offer for pharmaceutical and/or nutritional
approaches for the treatment and prevention of autism.
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