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Abstract

Background: Tick-borne encephalitis (TBE) is a serious acute central nervous system infection that can result in
death or long-term neurological dysfunctions. We hypothesize that changes in sphingosine-1-phosphate (S1P)
concentration occur during TBE development.

Methods: S1P and interleukin-6 (IL-6) concentrations in blood plasma and cerebrospinal fluid (CSF) were measured
using HPLC and ELISA, respectively. The effects of S1P on cytoskeletal structure and IL-6 production were assessed
using rat astrocyte primary cultures with and without addition of plasma gelsolin and the S1P receptor antagonist
fingolimod phosphate (FTY720P).

Results: We report that acute inflammation due to TBE virus infection is associated with elevated levels of S1P and
IL-6 in the CSF of infected patients. This elevated concentration is observed even at the earliest neurologic stage of
disease, and may be controlled by glucocorticosteroid anti-inflammatory treatment, administered to patients
unresponsive to antipyretic drugs and who suffer from a fever above 39°C. In vitro, treatment of confluent rat
astrocyte monolayers with a high concentration of S1P (5 μM) results in cytoskeletal actin remodeling that can
be prevented by the addition of recombinant plasma gelsolin, FTY720P, or their combination. Additionally,
gelsolin and FTY720P significantly decreased S1P-induced release of IL-6.

Conclusions: TBE is associated with increased concentration of S1P and IL-6 in CSF, and this increase might
promote development of inflammation. The consequences of increased extracellular S1P can be modulated by
gelsolin and FTY720P. Therefore, blocking the inflammatory response at sites of infection by agents modulating
S1P pathways might aid in developing new strategies for TBE treatment.
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Background
Sphingosine-1-phosphate (S1P) is a product of sphingo-
myelin (SM) metabolism. It is present in most eukaryotic
organisms. S1P regulates cell function both intracellu-
larly and by binding to extracellular receptors [1]. As
an extracellular mediator, S1P binds to a family of
G-protein-coupled receptors named S1P(1)-S1P(5) and
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has multiple physiological effects [2]. In the immune
system, cell surface S1P(1) receptors transduce the
rapid, transient effects of extracellular S1P on T- and
B-lymphocyte trafficking, promote early T-cell migration
to tissue sites of immune responses, and regulate T-cell
proliferation and secretion of numerous cytokines [1,3].
S1P receptors are also found on all cell types in the CNS,
and the effects of S1P on neurons [4], astrocytes [5,6], oli-
godendrocytes [7], and microglia [8,9] are highly cell-type
specific. For example, S1P is a chemoattractant for neural
precursor cells and is proposed to direct migration of
neurons to sites of injury [10]. Additionally, S1P [7] or
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synthetic ligands of S1P receptors [11,12] interact with
neurotrophin-3 to promote survival of oligodendrocytes.
S1P is abundant in plasma where it is bound to high-

density lipoproteins and albumin [13]. Recently we have
shown that plasma gelsolin, an actin-binding PIP2-regulated
protein, can also act as a universal carrier or scavenger of
S1P, and its function may include interference with S1P
actions [14]. Such an interaction may be of importance in
settings where the concentrations of both substances
change over their homeostatic ranges. Multiple sclerosis
(MS), a chronic immune-mediated inflammatory disease
of the CNS, seems to be one example of such a condition
[15]. In the CSF of patients with MS, S1P and gelso-
lin concentrations showed a tendency to increase and
decrease, respectively, when compared to other non-
inflammatory neurological disorders [15]. An inflamma-
tory reaction accompanied by central nervous system
(CNS) infections such as tick-borne encephalitis (TBE) or
Lyme neuroborreliosis (LNB), also results in blood and
cerebrospinal fluid (CSF) alterations in plasma gelsolin
[15]. TBE, a systemic infection with RNA virus leads to
the development of an acute meningitis and encephalitis,
characterized by swelling of the brain due to inflammation
[16]. Even though TBE can be prevented by active
immunization, it is still very common in some regions
of the world, such as Central Europe, and currently no
specific treatment is known [17,18]. We hypothesize that
TBE may result in an alteration of S1P concentration in
the blood and CSF of patients, and in such a case modula-
tion of S1P cellular effects may be used to develop new
treatment strategies. FTY720P, a S1P receptor modulator,
was found to be highly effective in the treatment of MS
[19], and its immunomodulatory activity may be poten-
tially beneficial in other CNS inflammatory conditions.

Materials and methods
Materials
S1P (S9666) was purchased from Sigma Aldrich (St Louis,
Missouri, United States). (S)- fingolimod phosphate
(FTY720P; B-0721) was purchased from Echelon Biosci-
ences Inc. (Salt Lake City, Utah, United States). Recombin-
ant human plasma gelsolin (rhGSN) was obtained from
Biogen-Idec Inc (Cambridge, Massachusetts, United States).
Stock solutions of S1P were prepared in 0.3 M NaOH, since
pH strongly affects the aggregation behavior of S1P [20].
Various concentrations of S1P were prepared by mixing its
sonicated stock solution; 10 minutes, at room temperature
(RT) with buffer required for a particular experiment.

Specimen collections
Human blood and CSF specimen collection was per-
formed in the Department of Neurology and Department
of Infectious Diseases and Neuroinfections at the Medical
University of Białystok (Poland). Blood was collected in
heparinized syringes and centrifuged at 1,500 g for 5 mi-
nutes at 4°C. The protocol for this study was approved by
the Ethics Committee for Research on Humans, Medical
University of Białystok (approval number: R-I-002/382/
2012). At the time of patient recruitment, written consent
was obtained from all subjects. All individuals were under-
going lumbar puncture for diagnostic purposes, and most
of the TBE patients received a second lumbar puncture
10 to 12 days later to monitor the course of the disease.
Following lumbar punctures, CSF cells were counted,
and the rest of the material (after centrifugation: 2,000 g
for 10 minutes), along with plasma samples, were frozen
and kept at −80°C.
Clinical and laboratory characteristics of the patient

groups are given in Table 1. Briefly, all TBE patients
were divided into the following groups: without and
with glucocorticosteroids (GCs) treatment (+G), from
whom the CSF and plasma were collected at admission
(TBE-I/TBE + G-I; patients at time of admission and
first lumbar puncture without or with GCs treatment
respectively) and patients from whom the CSF and
plasma samples were collected after 10 to 12 days of
treatment (TBE-II/TBE +G-II; patients after 10 to 12 days
of hospitalization, non-treated or treated with GCs, re-
spectively). Diagnosis of TBE was confirmed by detection
of anti-TBE virus antibodies in the serum and CSF by
ELISA (Virion-SERION kit, SERION ELISA classic TBE
Virus IgG/IgM,Würzburg, Germany). All TBE patients
were given symptomatic treatment (analgesics, antipy-
retics, and intravenous rehydration). Additionally, patients
in poor general condition (fever above 39°C and seizures
or disturbances of consciousness (Glasgow Coma Scale
score <12 points)) were treated with glucocorticosteroid
(dexamethasone 12 to 16 mg daily), which was given
intravenously during a period of four to six days.
LNB was diagnosed according to the European Feder-

ation of Neurological Societies criteria [21]. In all our LNB
patients the diagnosis was ‘definite neuroborreliosis’ and
all of them suffered from meningitis, which is a typical
clinical manifestation of early LNB. The ELISA method
(Borrelia recombinant IgG/IgM ELISA, Vienna, Austria) and
immunoblotting (LINE Virotech, Rüsselsheim, Germany)
were used to detect antibodies against Borrelia burgdorferi
in serum and CSF of LNB patients. MS patients included
in the study were in the process of MS diagnosis, and
their EDSS (Expanded Disability Status Scale) scores
were between 0.5 and 4.0 (1.7 ± 0.9). Finally, they were
diagnosed according to McDonald’s criteria [22] as
relapsing-remitting MS. At the time of lumbar puncture
none of the MS patients was treated with steroids or any
disease-modifying drugs. Control patients without infec-
tion were diagnosed with conditions such as idiopathic
cephalgia and idiopathic Bell’s facial nerve palsy, in which
standard CSF diagnostic tests show no abnormalities.



Table 1 Clinical and laboratory characteristics of the patient groups

Clinical group Total number Age CSF

(Females) (Years) QALB Total protein (μg/ml) Lymphocytes

TBE-I

with GCs treatment 21(10) 43.7 ± 16.2 12.1 ± 1.4 851 ± 121 105 ± 15.1

without GCs treatment 24(11) 829 ± 129 93 ± 12.1

TBE-II 40.7 ± 16.9 11.3 ± 1.7

with GCs treatment 19(10) 811 ± 128 76 ± 23.4

without GCs treatment 44.2 ± 12.8 11.6 ± 1.3 784 ± 122 76 ± 14.1

20(9)

LNB 39.1 ± 16.7 10.8 ± 1.3 782 ± 152 48.2 ± 9.3

18(7) 46.5 ± 10.3 9.8 ± 1.1

MS 22(16) 37.2 ± 13.4 6.5 ± 0.9 435 ± 163 5.7 ± 4.6

Control

Idiopathic cephalgia 21(14) 43.6 ± 21.4 6.1 ± 0.5 414 ± 144 3.7 ± 1.9

Idiopathic (Bell’s) facial nerve palsy 16(10) 45.2 ± 18.8 6.7 ± 1.1 375 ± 183 4.1 ± 1.2

QALB = albumin concentration in CSF: albumin concentration in blood. CSF – cerebrospinal fluid, TBE-I – tick borne encephalitis before treatment, TBE-II – tick
borne encephalitis after 10 to 12 days of treatment, LNB – Lyme neuroborreliosis, MS – multiple sclerosis, GCs – glucocorticosteroids.
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Evaluation of sphingosine-1-phosphate in blood plasma
and cerebrospinal fluid samples
S1P concentration was measured by the method described
in Min et al. [23]. Briefly, acidified methanol and internal
standard (30 pmol of C17-S1P, Avanti Polar Lipids, Inc.,
Alabaster, USA) were added to 250 μl of plasma or CSF,
and the samples were ultrasonicated in ice-cold water for
one minute. Lipids were then extracted by the addition
of chloroform, 1 M NaCl, and 3 N NaOH. The alkaline
aqueous phase containing S1P was transferred to a fresh
tube. The residual S1P in the chloroform phase was re-
extracted twice with methanol/1 M NaCl (1:1, v/v) solu-
tion, and then all the aqueous fractions were combined.
The amount of S1P was determined indirectly after de-
phosphorylation to sphingosine, with the use of alkaline
phosphatase (bovine intestinal mucosa, Fluka, Milwaukee,
Washington, United States). To improve the extraction
yield of released sphingosine, chloroform was carefully
placed at the bottom of the reaction tubes. The chloro-
form fraction containing the dephosphorylated sphin-
goid base was washed three times with alkaline water
(pH adjusted to 10.0 with ammonium hydroxide) and
then evaporated under a nitrogen stream. The dried
lipid residues were re-dissolved in ethanol, converted to
their o-phthalaldehyde derivatives, and analyzed using
an HPLC system (ProStar, Varian Inc. Walnut Creek,
USA) equipped with a fluorescence detector and a C18
reversed-phase column (OmniSpher 5, 4.6150 mm, Varian
Inc. Walnut Creek, USA). The isocratic eluent compos-
ition of acetonitrile/water (9:1, v/v) and a flow rate of
1 ml/min were used. Column temperature was maintained
at 33°C by use of a column oven (Varian Inc. Walnut
Creek, USA).
Cell culture study
Mixed cortical cultures were obtained from prenatal rats
and maintained for 14 days, or until confluence was
reached, in Neurobasal™ media supplemented with 0.4 M
GlutaMax and B27 (50× dilution) (Life Technologies,
3175 Staley Road, Grand Island, NY 14072, USA) at 37°C
and 5% CO2. Neuronal cells were removed through a series
of trypsinizations, and the remaining astrocytes were
maintained at 37°C and 5% CO2 in DMEM+GlutaMax
(Life Technologies, 3175 Staley Road, Grand Island, NY
14072, USA) supplemented with 5% fetal bovine serum.
The purity of astrocyte cultures was 80% or more, as de-
termined by immunofluorescence staining for glial fibril-
lary acidic protein [24,25]. In all experiments, the medium
was changed to serum-free 6 to 12 hours prior to S1P,
GSN, or FTY720P addition. Rat astrocytes were treated
for 8 hours, fixed with 4% paraformaldehyde, perme-
abilized with 0.1% Triton X-100 and stained for F-actin
with Phalloidin-FITC (Life Technologies, 3175 Staley
Road, Grand Island, NY 14072, USA). Microscopic evalu-
ation was performed using a Leica microscope (Leica
Microsystems Inc., 1700 Leider Lane Buffalo Grove, IL
60089, USA) (40× objective) and images captured with
a Hamamatsu camera (Hamamatsu, Eastern Regional
Office, 250 Wood Avenue Middlesex, NJ 08846, USA).
To evaluate GSN and FTY720P effects on interleukin-6
(IL-6) release from rat astrocytes, cells were activated for
8 hours. Cell-free supernatants were collected by centrifu-
gation at 5,000 × g for 5 minutes and stored at −80°C until
cytokine determination. IL-6 was measured using a sand-
wich enzyme-linked immunosorbent assay (ELISA Kits,
DRG Interleukin-6 (human) Marburg, Germany), accord-
ing to the manufacturer’s instructions.



A

B

Figure 1 S1P concentration in blood plasma (A) and CSF (B)
samples obtained from control (n =37) subjects and from
patients with various inflammatory diseases of the CNS: MS
(n =22), LNB (n =18), TBE (n =45). *Significantly different. Error
bars represent standard error of the mean. S1P – sphingosine – 1–
phosphate, CSF – cerebrospinal fluid, MS – multiple sclerosis,
LNB – Lyme neuroborreliosis, TBE – tick borne encephalitis.
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Statistical analysis
Data are reported as a mean ± SE (standard error) or SD
(standard deviation). Data analysis was performed using
one-way analysis of variance (ANOVA) tests with a post-
hoc Bonferroni analysis test. Differences between means
were evaluated using the Student’s t-test, with P <0.05
being taken as the level of significance.

Results and discussion
Using HPLC methods, we found that the average S1P
concentration in plasma of TBE (451.0 ± 21.8 nM) and
LNB (538.0 ± 30.5 nM) patients was significantly higher
(P <0.001) than in control subjects (383 ± 23.3 nM)
(Figure 1). There were no differences between average
S1P concentration in the plasma of control and MS pa-
tients. Average S1P concentrations in the CSF of patients
with inflammatory diseases of the CNS (MS 1.71 ± 0.29
nM, LNB 1.5 ± 0.14 nM, TBE 1.74 ± 0.14 nM) were also
significantly higher (P <0.001) compared to the control
group (0.72 ± 0.16 nM). These results are in close agree-
ment with our previous study in which we showed an
intrathecal increase of S1P in early stage MS [26]. They
also confirm our preliminary finding of an increase of S1P
concentration in lymphocytic meningitis [14]. Comparing
S1P concentration at different stages of TBE, as shown in
Figure 2, we found that a short course of glucocorticoster-
oid treatment resulted in a significant decrease of S1P
concentration in the blood (P <0.02) and CSF (P <0.05) of
TBE patients. More precisely, before treatment S1P levels
were 433.2 ± 19.2 nM and 2.29 ± 0.22 nM in plasma and
CSF, respectively, and after treatment they were 370 ± 24.9
nM and 0.95 ± 0.21 nM in plasma and CSF, respectively.
Average S1P concentration in plasma of TBE patients
not treated with glucocorticosteroids remained stable
(439.4 ± 21.0 nM versus 446 ± 35.8 nM). However, in
the CSF of TBE subjects not treated with glucocorti-
costeroids, S1P concentration continued to increase
during the course of the disease and was significantly
higher (P <0.05) in samples obtained during the second
lumbar puncture performed 10 to 12 days after the first,
compared to the samples taken during the first lumbar
puncture, which was performed at the time of diagnosis
(1.79 ± 0.39 nM versus 1.48 ± 0.23 nM). This difference
suggests an essential role of S1P in progression of these
inflammatory processes. The initial S1P concentration in
the CSF of subjects in poor general condition treated with
glucocorticosteroids was higher compared to the initial
S1P concentration in non-treated patients who were in
better general condition. We did not observe significant
changes in basic CSF parameters after glucocorticosteroid
treatment (Table 1). However, the decrease in pleocytosis,
which is an indicator of inflammation, was greater in
treated subjects. The mean difference between the first
and second lumbar puncture (number of lymphocytes in
1 μl of CSF) was 29 and 17 in treated and non-treated
patients, respectively.
There is currently no specific treatment for TBE in-

fection, and treatment with glucocorticosteroids is still
used in the most severe cases in countries with a high
prevalence of the disease [27,28]. In the north-eastern
part of Poland (region of Bialystok) the incidence of
the disease is 5.1 to 13.1 out of 100,000, and patients
from this region constitute more than 40% of all TBE
cases reported in the whole country [25]. A retrospect-
ive study conducted at the Departments of Infectious
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Figure 2 S1P concentration in blood plasma (A) and CSF (B)
samples obtained from TBE patients. TBE-I (n =24) and TBE + G-I
(n =21) samples obtained before treatment from subjects not treated
and treated with glucocorticosteroids, respectively. TBE-II (n =20) and
TBE + G-II (n =19) samples obtained 10 to 12 days later from patients
not treated and treated with glucocorticosteroids, respectively.
*Significantly different. Error bars represent standard error of the
mean. S1P – sphingosine – 1– phosphate, CSF – cerebrospinal
fluid, TBE – tick borne encephalitis.
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Diseases and Neuroinfections, Medical University of
Białystok (Poland) included 687 patients diagnosed with
TBE and hospitalized in this department between 1993
and 2008. About 60% (407 of 687) of them were given
dexamethasone, with clinical improvement in most cases,
and no serious side effects were observed [25]. However,
treatment with glucocorticosteroids is controversial [29,30]
and may lead to serious metabolic and circulatory compli-
cations. Therefore, this therapy should be reserved only
for certain severe cases of the disease, in which probability
of clinical benefit is higher than risk of serious adverse
events. There is a need for new effective and safe
medications.
Astrocytes are the most abundant cells in the brain [31]

and changes in their F-actin cytoskeleton organization
occur during pro-inflammatory cytokine secretion [32], as
well as changes in the regulatory interface at the blood–
brain barrier [33]. Accordingly, following inflammatory
stimuli, significant changes in astrocyte actin filament
organization have been observed [14,31]. Results from
our cell culture studies indicate that factors interfering
with S1P signaling affect astrocyte F-actin cytoskeletal
organization. As shown in Figure 3A, a low concentra-
tion of S1P (1 μM) and recombinant human gelsolin
(2 μM), added separately, did not have a dramatic effect
on F-actin organization, but 1 μM S1P in combination
with GSN produced a marked increase in the F-actin
staining at the cytoplasmic margin (cortical F-actin),
associated with a significant decrease of total F-actin
(Figure 3B). In contrast, a high concentration (5 μM) of
S1P produced a decrease in total F-actin concentration.
Additionally, gaps comparable to the size of an astrocyte
were observed in the monolayer after this treatment.
These results may explain the severe blood-CSF barrier
disruption in our TBE patients in whom the QALB
(QALB = albumin concentration in CSF: albumin concen-
tration in blood) ratio, an indicator of blood-CSF barrier
function, was definitely above norm (norm for 40-year-old
individuals is about 6.5) [34]. At admission, patients
treated and not treated with glucocorticosteroids had
similar QALB ratios; 12.1 ± 1.4 and 11.3 ± 1.7, respectively.
Indeed, there is evidence to suggest that weakening of the
blood–brain barrier may precede, accelerate, or contribute
to a number of neurodegenerative disorders, and that a
gap formation may lead to changes in the blood-CSF bar-
rier function [35,36]. On the other hand, in the cell culture
system, the effect of high S1P treatment was inhibited by
co-treatment with gelsolin, 5 μM FTY720P, or a combin-
ation of gelsolin and FTY720P. Interestingly, treatment
with 5 μM FTY720P alone caused a significant increase in
F-actin, which was slightly inhibited by gelsolin.
Astrocytes release a variety of cytokines in response to

CNS infections and injuries [37,38]. IL-6 is a pleiotropic
pro-inflammatory cytokine produced by astrocytes that
may also act as a trophic factor in the nervous system
[39-41]. Mechanisms that regulate IL-6 expression require
activation of p38 mitogen-activated protein kinases and
depend on NF-κB transcriptional activity. Initiation of
these pathways in astrocytes occurs when the PI3K-
mTOR-AKT pathway is inhibited [42]. As indicated by
data shown in Figure 4, a statistically significant increase
of IL-6 in blood and CSF was observed in samples collected
from TBE subjects at the time of diagnosis, compared
to controls (Figure 4). This observation confirmed our
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Figure 3 F-actin structure in rat astrocytes (confluent culture) treated with S1P, recombinant human plasma gelsolin and FTY720P, or their
combination. At 8 hours incubation the cells were fixed with 4% paraformaldehyde, permeabilized with Triton X-100 and F-actin was stained with
Phalloidin-FITC. Arrows indicate gaps in astrocyte monolayers. Data from one representative experiment are shown (A). B shows quantitative analysis
of F-actin fluorescence in the astrocyte monolayer under treatment, indicated by numbers 1 to 10 in the left lower corner of each picture. *Significantly
different. Error bars represent standard error of the mean. S1P – sphingosine – 1– phosphate, GSN – recombinant human plasma gelsolin.
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previous study [43]. Moreover, in an animal model of
TBE, significantly increased IL-6 mRNA was found,
but only in mice susceptible to the infection. In the
resistant strain, upregulation of IL-6 mRNA expression
was not observed. These data suggest that excessive
A

B

Figure 4 IL-6 concentration in blood plasma (panel A) and
cerebrospinal fluid (panel B) obtained from control (CNT, n =6)
and TBE patients. TBE-I (n =9) and TBE + G-I (n =10) samples
obtained before treatment from subjects not treated and treated
with glucocorticosteroids, respectively. TBE-II (n =9) and TBE + G-II
(n =10) samples obtained 10 to 12 days later from patients not treated
and treated with glucocorticosteroids, respectively. *Significantly
different. Error bars represent standard deviation of the mean.
IL–6 – interleukin 6, TBE – tick borne encephalitis.
production of pro-inflammatory mediators, such as IL-6,
may contribute to development of a more severe form of
TBE [44].
Our results indicate that S1P, but not GSN or

FTY720-P, induced production of IL-6, and treatment
A

B

Figure 5 S1P, recombinant human plasma gelsolin (rhGSN) and
FTY720P prevent release of IL-6 from rat astrocytes. IL-6 release
from rat astrocytes 8 hours after addition of S1P, (rhGSN and
FTY720P (A). Decrease of IL-6 release from rat astrocytes activated
with S1P (5 μM) in the presence of rhGSN (5 μM) and FTY720P
(5 μM) (B). *Significantly different. Error bars represent standard
deviation of the mean. IL–6 – interleukin 6, S1P – shingosine-1-
phosphate
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with GSN or FTY720-P inhibited IL-6 release by rat
astrocytes stimulated with S1P (Figure 5). These results
suggest that the S1P pathway may partly govern the
production of pro-inflammatory cytokines by astrocytes.
Consequently, it is highly probable that the potential
therapeutic effects of GSN (which has a significantly
decreased concentration in the blood of TBE patients
[45]) and FTY720P might be caused by modulation of
S1P-mediated activation of astrocytes in the CNS. It
was recently reported that FTY720 exposure might
regulate specific neuroinflammatory responses by de-
sensitizing astrocytes to external S1P [19]. Studies in
experimental autoimmune encephalomyelitis using mice
with conditionally deleted S1P(1) receptor from astrocytes
indicate that one beneficial effect of FTY720P in this
model occurs via downregulation of external receptors,
which inhibits responses induced by the natural agonist.
Another proposed effect of FTY720P on neuroinflamma-
tion is its ability to maintain persistent signaling in cells
via internalized S1P(1) receptor resulting in functional
responses that include suppressing intracellular calcium
release [19]. Further in vivo experiments with FTY720P
would be required to demonstrate a causal role of S1P
in the pathogenesis of TBE.

Conclusions
Acute CNS inflammation due to TBE virus infection is
associated with an elevated S1P concentration in the blood
and CSF of infected patients. In a cell culture system, the
functions of astrocytes in an inflammatory state, induced by
a high concentration of S1P, can be restored to their normal
state by the administration of rhGSN, FTY720P, or their
combination. This observation could be of clinical signifi-
cance and might be useful for developing new treatments
for pathological CNS conditions associated with rising
concentrations of S1P in the blood and CSF, such as are
produced by TBE.
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