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Abstract

Alzheimer’s disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer’s
disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset
Alzheimer’s disease. The etiology of late-onset Alzheimer’s disease is not based on mutations related to amyloid-β
(Aβ) or tau production which are currently the basis of in vivo models of Alzheimer’s disease. It has recently been
suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies
in late-onset Alzheimer’s disease. The aim of this study is to analyze the characteristics of rodent models of
neuroinflammation in late-onset Alzheimer’s disease. Our search criteria were based on characteristics of an idealistic
disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the
actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer’s disease should
include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive
impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria:
lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine
neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25
transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are
compatible with the inflammation hypothesis of Alzheimer’s disease.
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Introduction
After decades of research, Alzheimer’s disease (AD) re-
mains incurable and thus is considered a major human
healthcare challenge [1]. A therapeutic intervention with
the potential to cure AD should be a mechanistic disease-
modifying agent that can slow or halt the neurodegenera-
tive process; and ideally reverse it towards regeneration
[2]. Recently, several potentially disease-modifying agents
have been suggested for AD. Many of these suggested
therapeutic agents have passed the efficacy testing in ani-
mal models. However, all of the ensuing phase three clin-
ical trials have failed [3]. These failures question not only
our accurate understanding of the disease [1], based on
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which the therapeutic agents have been designed, but also
the animal models in which both our understanding of
the disease and drug discovery efforts are rooted [4].
Failure in AD drug discovery may in part be attribut-

able to the so-called lesion seduction [1], a simplistic
paradigm postulating that AD-related histopathological
lesions are a direct reflection of its etiology [1]. Follow-
ing this paradigm, the most commonly used animal
models of AD are designed to recapitulate the lesions of
AD [5], namely amyloid-β (Aβ) plaques and neurofibrillary
tangles through transgenic induction of mutations related
to amyloid and tau production (amyloid precursor protein
(APP), presenilin-1 (PS1) and PS2, or tau mutations
[6,1,7]). However, since late-onset AD (LOAD) is not
caused by such mutations [6], the results from these ani-
mal models cannot be reliably extrapolated to the human
condition, further widening the gap between human AD
pathology and its most commonly used models.
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In fact, there is growing evidence of very early involve-
ment of other mechanisms which may commence even
before the emergence of tau and Aβ pathologies in
LOAD pathogenesis [5,8]. These potentially triggering
mechanisms include but are not limited to vascular
pathology [9], mitochondrial dysfunction [10], oxidative
stress [1], hypoxia [11], insulin resistance [12], and
chronic neuroinflammation [13].
It has been proposed that a combination of chronic neu-

roinflammation and (pathological) aging, the so-called ‘neu-
roinflammaging’ state [14,15], plays a major role in the
mechanism of neurodegenerative disorders, including AD
[16,17]. Notably, genetic variants associated with the regula-
tion of innate immunity and phagocytosis (for example,
TREM2 [18,19] or CD33 [20]) have been identified as risk
factors for LOAD [21,20]. Similarly, neuropathological stud-
ies have supported early involvement of neuroinflammation
in AD through demonstrating the accumulation of acti-
vated microglia and inflammatory mediators in the cerebral
neocortex at a low Braak stage for AD pathology [22].
In this study, we focused on characterizing the models

suitable for studying the inflammation hypothesis of
Alzheimer’s disease, based on which neuroinflammation
is considered as the driving force of AD pathology and
starts early in the course of the disease, prior to tau
hyperphosphorylation and amyloid plaque formation
[23,13]. A thorough characterization of these models will
enable future research to understand the possible transi-
tion from ‘neuroinflammaging’ state to neurodegenera-
tion and also to test the efficacy of potential therapeutic
agents to prevent such a transition.

Neuroinflammation in Alzheimer’s disease
Neuroinflammation is known as a key component in the
neurodegenerative process of Alzheimer’s disease [24].
Characteristics of neuroinflammation, like severity and
duration, vary depending on the underlying causes. At
one end of the spectrum, there are autoimmune disor-
ders, such as multiple sclerosis, featuring chronic neuro-
inflammation mainly driven by Th1 cells (reviewed in
[25]); At the other end of the spectrum, there is a less
fulminant ‘smoldering’ form of chronic neuroinflamma-
tion driven by cells of the innate immunity ([26], reviewed
in [27]). The latter is mainly due to age-related impair-
ment of anti-inflammatory mechanisms that leads to the
aforementioned ‘inflammaging’ state [18,20,28] and causes
subtle clinical symptoms, as exemplified by neuroinflam-
mation following traumatic brain injury, which may per-
sists for years prior to clinical manifestation as AD [29].
The most recent perspective of the inflammation hy-

pothesis of LOAD, proposed by Krstic et al. [13], has pro-
vided a comprehensive sequence of pathological events
leading to AD pathology. Based on this hypothesis, the
natural neuronal response to inflammatory stress includes
hyperphosphorylation of tau (hp-Tau) and mislocalization
of hp-Tau towards the somatodendritic compartment as
well as increased APP synthesis [13]. Under physiological
conditions, the resulting APP aggregates are cleared by
neuroprotective microglia [13]. However, in the setting of
pathological aging, for example, midlife overweight and
obesity [30], microglia become hyper-reactive with in-
creased release of pro-inflammatory cytokines and dysfunc-
tional phagocytosis [13]. This results in further exposure of
neurons to a neurotoxic pro-inflammatory environment
without the guard of neuroprotective microglia [13]. The
consequent neuronal injury includes breakdown of the
axonal cytoskeleton leading to the impairment of axonal
transport, formation of axonal swellings of APP aggregates
[13], and eventually dystrophic neurites that cannot be
removed by hyper-reactive microglia [13]. Secondary to
this neuronal degeneration, Aβ plaques are formed from
the intracellular APP aggregates [13]. These plaques will
trigger further release of pro-inflammatory molecules
leading to a vicious circle of neurotoxic pro-inflammatory
response [13].
The pathological activation of microglia, which is the

center of this proinflammatory response, is characterized
by upregulation of MHC antigens and complement recep-
tors [31], as well as release of various pro-inflammatory
factors like tumor necrosis factor-α (TNF-α), interleukin-1
β (IL-1β), IL-6, and reactive nitrogen and oxygen species
[31]. These pro-inflammatory factors are neurotoxic espe-
cially if accumulated during a chronic neuroinflammatory
process [31].
Alternatively, some microglia deteriorate in the process

of immune system senescence [32]. Histopathologically,
this status manifests with microglial dystrophy, which is
distinguished from cytoplasmic hypertrophy as seen in ac-
tivated microglia. Dystrophic microglia are also associated
with neurofibrillary degeneration in AD brain, especially
in the temporal lobe [33]. Such observations have led to
the hypothesis that senescence of microglia itself might be
the initial trigger of Alzheimer’s disease neuropathology;
in this regard, Alzheimer’s disease would be viewed as an
immune senescent rather than neuroinflammatory condi-
tion [33,32]. However, growing evidence suggests that
hyper-reactive microglia is involved in early stages of
LOAD [34], but may more rapidly undergo the process of
senescence, and thus become non-functional after the ini-
tial induction of an aberrant inflammatory response. It is
noteworthy that in such dystrophic status, like hyper-
reactive mode, microglia remain unable to fulfill their
physiological roles of clearing the neurotoxic aggregates
[35], like Aβ oligomers, and producing neurotrophic fac-
tors, therefore, allowing the process of neurodegeneration
to progress. Such paradigm may explain the early-stage re-
sponsiveness of the disease to NSAIDS compared to its
NSAIDS-induced aggravation at later stages. Restraining
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microglial activity in early stage will slow the disease; but
in later stages, it will accelerate the disease process prob-
ably through restraining the residual neuroprotective and
clearance function of dystrophic microglia [36].

Rodent models of neuroinflammation
In conventional transgenic animal models of AD, neuro-
inflammation is mainly known as a secondary response
to sustained Aβ overproduction and deposition. It in-
cludes microglial activation and variable involvement of
the complement system and production of cytokines
[13,17,37]. Altogether, in these models, the inflammatory
response is incomplete and less severe compared to AD
in humans [13]. Janelsins and colleagues detected early
activation of inflammatory processes in the entorhinal
cortex (but not hippocampus) of the triple transgenic
model (3xTg) of AD at 3 months of age [38]. Interest-
ingly, the neuroinflammation process was concurrent
with the production and accumulation of intracellular
Aβ but occurred prior to any significant extracellular Aβ
plaque deposition, which manifests at about 12 months
of age in the 3xTg mice [38]. Of note, this neuroinflam-
matory process was characterized by a selective trend of
increasing expression of TNF-α and monocyte chemo-
attractant protein-1 (MCP-1), which was not detected
for 21 other cytokines tested [38]. Moreover, a substan-
tial microgliosis was detectable at 6 months of age. Al-
though this study provided valuable evidence for a
contributory role of inflammatory factors like TNF-α
and MCP-1 in AD pathology, the model system repli-
cates the familial but not sporadic type of AD [38].
An ideal disease model should recapitulate causes, le-

sions, and symptoms in a chronological order similar to
the actual disease [7]. A faithful model to the inflam-
mation hypothesis of AD should be an aged animal that
recapitulates early chronic neuroinflammation prior to
hyperphosphorylation of tau and Aβ plaque deposition.
In rats, a neuroinflammatory process lasting more than
7 days is considered chronic neuroinflammation [39];
and rodents older than 22 months are considered sen-
escent [40].
Here, we reviewed potential rodent models of AD that

present early neuroinflammation in the disease process
and are not genetically manipulated by mutations related
to Aβ or tau production (summarized in Table 1). In this
regard, inflammatory responses in amyloid-injected models
(reviewed in [41]) are beyond the theme of this article. We
categorized models, based on the mechanism of their cre-
ation, to immune challenge-based, toxin-induced, and
(non-AD) transgenic models. Current knowledge on the
chronology of pathological events was analyzed for each
model to discuss its potential compatibility with the in-
flammation hypothesis of AD (see Figure 1 for the com-
patible models).
Immune challenge-based models
Lipopolysaccharide (LPS)-induced neuroinflammation
A commonly studied model of neuroinflammation is
LPS-induced neuroinflammation which represents the
current standard paradigm to study neuroinflammation
both in vivo [42,43] and in vitro [26,44]. LPS, also known
as endotoxin, is a component of the outer membrane of
gram-negative bacteria. LPS binds CD14 on microglia
membranes. The LPS-CD14 complex then interacts with
the toll-like receptor-4 (TLR-4) [26,45], which, in turn,
activates microglia by initiating signal transduction cas-
cades leading to rapid transcription and release of pro-
inflammatory cytokines [46] (including IL-1, IL-6, IL-12,
p40, and TNF-α), chemokines (for example, CCL2, CCL5,
and CXCL8), the complement system proteins (for ex-
ample, C3, C3a, and C5a receptors) [46], as well as anti-
inflammatory cytokines like IL-10 [47] and transforming
growth factor-β (TGF-β) [48].
Different paradigms of LPS-induced neuroinflamma-

tion exist with respect to the route of administration,
duration of exposure and age of the animals [49]. While
chronic central administration of LPS can induce mem-
ory and learning deficits analogous to AD cognitive de-
cline [50], systemic LPS administration led to selective
hippocampal impairment in context-object discrimin-
ation but not spatial memory [51]. Moreover, Bordou
and colleagues recently investigated the role of duration
of exposure to LPS as well as the age of exposed rats
on the neuroinflammatory response to LPS. Male rats
at three age groups of young (3 months), middle-aged
(9 months), and aged (23 months) received continuous
infusion of picomolar levels of LPS (or artificial CSF as
control) into their fourth ventricle [49]. The duration of
exposure was either 3 or 8 weeks. Among all cytokines,
TNF-α increase in response to LPS infusion was similar
in different age groups [49]. However, in contrast to young
rats, IL-1β did not significantly increase after 3 weeks of
infusion in middle-aged and aged rats. Instead, aged rats
had significantly increased IFN-γ compared with younger
rats [49]. Among rats of the same age group, longer dur-
ation of exposure to LPS infusion significantly increased
the elevations of IL-1-α, IL-2, IL-4, IL-5, IL-6, IL-12,
IL-13, and GM-CSF levels [49]. This study provides
an evidence of the influence of age and chronicity of infec-
tion on neuroinflammatory responses in certain regions of
the brain, like locus coeruleus, which undergo significant
cell loss in early stages of AD [52].
In similar studies performed by Wenk and coworkers

[43,53-55], chronic neuroinflammation was modeled
through continuous infusion of picomolar concentra-
tions of LPS into the fourth ventricle of adult rats. A
widespread activation of microglia was detected 2 days
after the initiation of LPS infusion [55]. Within 2 weeks
after the cessation of LPS infusion, microglial activation



Table 1 Rodent models of neuroinflammation

Models Predisposing factors/causes Time of appearance of lesions Signs (time detectable) SLC
reading
key

Reference

hp-Tau Aβ depositions

LPS Peripheral immune challenge, chronic
neuroinflammation

? ? Fear memory (?) S1L0C1 [165]

Spatial memory (?)

PolyI:C Peripheral immune challenge, chronic
neuroinflammation

3m 12m Spatial memory (20 m) S1L1C1 [5]

(PHF, but not NFTs) (APP depositions)

ICV-STZ Disrupted insulin signaling, chronic
neuroinflammation

6-7w 12w Spatial memory S1L1C1 [85]

Visual recognition memory (3w)

ICV-OKA Inhibition of serine/threonine
phosphatases 1 and 2A

2w 6w Spatial memory (?) S1L1C0 [102] [104]

(PHF, but not NFTs) (Non-fibrillar Aβ deposits)

ICV-colchicine Inhibition of tubulin formation/
microtubule breakdown

? (Tau dephosphorylation) ? (Amyloid plaque) Spatial memory (14d to 21d) S1L0C1 [113] [117]

p25 Tg Upregulation of cPLA2, neuroinflammation 4w 8w Contextual fear memory (6w) S1L1C1 [145]

IL-1 β Tg Chronic neuroinflammation ? ? (Increased clearance of
amyloid plaques)

Contextual fear memory (12w) S1L0C0 [39]

Anti-NGF antibody Tg Blockade of NGF signaling pathway ? (Neurofibrillary pathology) ? (Amyloid plaques) Visual recognition memory (4 m);
Spatial memory (9 m)

S1L1C0 [148] [149]

This table summarizes the suggested models of late-onset AD (LOAD) displaying neuroinflammation as one of the prominent pathological events. The SLC reading key is a scoring system that represents the compatibility
of an animal model with the disease in humans with respect to signs (S), lesions (L), and causes (C) [7]. Compatibility is indicated by 1 and incompatibility by 0. Based on SLC reading key, p25 tg, PolyI:C-, and STZ-induced
neuroinflammation models are compatible with the inflammation hypothesis of LOAD [13]. (Abbreviations: ? unavailable data; LPS lipopolysaccharide; PolyI:C polyriboinosinic-polyribocytidilic acid; p25 Tg p25
transgenic model; NGF nerve growth factor; IL-1β Tg interleukin-1β transgenic model; ICV intracerebroventricular; STZ streptozotocin; OKA okadaic acid; hp-Tau hyperphosphorylated tau; Aβ amyloid β; PHF paired
helical filaments; NFT neurofibrillary tangles; cPLA2 cytosolic phospholipase 2; SLC Signs, Lesions, Causes; w week; m month).
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Figure 1 Time course of pathological events in models compatible with inflammation hypothesis of Alzheimer’s disease. In the models shown,
neuroinflammation starts prior to the appearance of AD related lesions (hp-Tau and Aβ depositions). Animals develop cognitive deficits at
variable time points after the induction of neuroinflammation in the respective models. In contrast to the most of transgenic AD animal models,
the STZ and p25 Tg models of neuroinflammation feature neurodegeneration. It is noteworthy that the PolyI:C model has the longest time lapse
between induction of neuroinflammation and cognitive deficits. Note that the time points do not necessarily represent the actual time of
appearance, but the time points when the pathological hallmarks were detected in the respective references (Abbreviations: LPS lipopolysaccharide;
PolyI:C polyriboinosinic-polyribocytidilic acid; p25 Tg p25 transgenic model; IL-1β Tg: interleukin-1β transgenic model; ICV-STZ intracerebroventricular
streptozotocin model; hp-Tau hyperphosphorylated tau; Aβ amyloid-β).
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decreased in most brain areas barring the hippocampus,
and after the following 2 weeks, inflammation was mainly
localized in the hippocampus [55]. Furthermore, MRI
scans showed shrinkage of the temporal lobe and enlarge-
ment of the lateral ventricles. Of note, electron micro-
scopic studies showed impaired protein synthesis in
hippocampal neurons of LPS-injected animals [54]. More-
over, neuronal loss and impairment of long-term potenti-
ation were reported in the entorhinal cortex [56] and
the dentate gyrus of the hippocampus respectively [57],
altogether explaining the decline in spatial memory [56].
In this model, LPS-induced neuroinflammation was time
dependent (maximal within 4 weeks of infusion) as well as
cell and region specific (microglia in hippocampus) [55].
Other groups have provided evidence of exacerbated AD-

related protein pathology such as increased Aβ production
through enhanced β-secretase activity in APP sweTg [44]
and tau hyperphosphorylation in 3xTg-AD mice following
LPS injection [42]. However, wild-type animals injected
with LPS showed no increased Aβ deposition in the time
course of 3 months. The authors argue that this process
might occur at a later time point due to severe neuronal
dysfunction and neurodegeneration [44]. Another explan-
ation for the lack of Aβ deposition in LPS-injected animals
was proposed by DiCarlo et al. by showing a reduction of
established Aβ plaques after intrahippocampal LPS injec-
tion through stimulation of Aβ clearance [58].
In line with neurodegenerative structural changes, LPS-

induced neuroinflammation caused cognitive deficits lead-
ing to impaired performance in associative and spatial
learning tasks [59,60]. Finally, a long-term characterization
of LPS-induced changes with regard to the chronology of
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histological and ultrastructural changes, as well as cogni-
tive deficits, is required to assess the compatibility of
LPS neuroinflammation model with the inflammation hy-
pothesis of AD [13].

PolyI:C-induced neuroinflammation
It is well understood that peripheral infections influence
the inflammatory state of the central nervous system
[61,62]. The brain innate immune system reacts to systemic
inflammation through activation of microglia (reviewed
in [13,31]), which may become a potential trigger for
neurodegenerative processes [31,61], especially when neu-
roinflammation becomes chronic in an aging brain [31].
Based on this evidence, a recent study proposed a non-
transgenic mouse model of LOAD featuring chronic neu-
roinflammation after in utero systemic immune challenge
[5]. Polyriboinosinic-polyribocytidilic acid (PolyI:C) is a
synthetic double-stranded RNA that induces an innate im-
mune response analogous to acute viral infections in
treated animals. In the CNS, this immune response is
mainly mediated by TLR-3-induced activation of microglia
[63], followed by an NF-kB-dependent induction of proin-
flammatory cytokines including IL-1β, IL-6, IL-8, TNF-α,
and type I and II interferons [64].
Exposure to PolyI:C leads to inflammation in the injected

animal, as well as a chronic proinflammatory state in the
fetus of pregnant animals [5,65,66]. Systemic injection of
PolyI:C on gestational day 17 led to chronic neuroinflam-
mation, as observed by significantly higher levels of IL-1
and IL-6 compared to the control group [5]. Increased
brain cytokine levels were detectable as early as the age of
3 weeks and sustained throughout aging [5]. However, tau
hyperphosphorylation started only after 3 months of age
and, in spite of some fluctuation, was significantly higher
than controls at 6 and 15 months of age [5]. Amyloidogen-
esis started as late as 12 months of age [5]. Later, at
20 months, animals in the immune-challenged group pre-
sented with a significant impairment of spatial recognition
memory compared to the control group.
There is growing evidence that early-life infection may

lead to abnormalities in cognitive aging [67], probably due
to glial priming effect, leading to significantly enhanced
glial reactivity to a subsequent immune challenge later in
life [67]. The late-gestational PolyI:C induced neuroin-
flammation model is an informative approach to study the
effects of life-long neuroinflammation on cognitive func-
tion. Notably, a single intraperitoneal injection of the
pregnant mouse was sufficient to change the inflammatory
state of the progeny throughout the entire life span, with
two additional PolyI:C injections in adulthood exacerbat-
ing the pathology. Further work is required to more thor-
oughly assess the cognitive phenotype of the aged animals,
especially since Bitanihirwe et al. described neuropsychi-
atric changes in prenatally stimulated adults [68].
It is noteworthy that the APP deposition and paired hel-
ical filaments (PHF) in this model do not completely repli-
cate the lesion in advanced human AD pathology, that is,
Aβ plaques and neurofibrillary tangles (NFT). However,
the protein pathology is entirely endogenous and not
relying on overexpression of human proteins in murine
cells. Thus, the differences between PolyI:C-challenged
mice and human AD patients might reflect characteris-
tics of the respective species. Finally, the chronological
order of pathological events and cognitive deficits in the
PolyI:C model is compatible with the inflammation hy-
pothesis of AD [13]; and therefore, it may be a suitable
model for studying early stages of LOAD pathology
from this perspective.

Neurotoxin-induced models
Streptozotocin-induced neuroinflammation
Since Siegfried Hoyer [69,70] and Suzanne Craft [71]
first described the causality between impaired insulin
signaling and cognitive dysfunction, a growing body of
evidence has emerged on impaired brain insulin signal-
ing and glucose metabolism in LOAD (reviewed in [72]).
Peripheral injection of the glucosamine-nitrosurea com-
pound streptozotocin (STZ) selectively damages pancre-
atic β-cells after being taken up via the glucose transporter
SLC2A2 [73,74]. Thus, repetitive intraperitoneal injection
of STZ is an established animal model of diabetes mellitus
[75]. Interestingly, after STZ-mediated induction of dia-
betes, rodents display impaired neuronal plasticity and
learning deficits [76]. In a recent study, STZ-induced dia-
betic rats presented frontal lobe neurodegeneration (as
evidenced by FJC staining) and hippocampal atrophy,
accompanied by Aβ aggregation, synapse loss, and the
consequent cognitive decline 4 months after receiving IV
STZ [77]. These deficits are mainly induced by peripheral
effects of STZ as the molecule does not cross the blood-
brain barrier [78,79].
Acutely, STZ causes oxidative stress through the gener-

ation of hydrogen peroxide [80] and NO [81]. Furthermore,
it leads to DNA damage by alkylation and methylation
leading to apoptosis [82]. Notably, since PARP knockout
animals are resistant to STZ-induced diabetes, cell death
is likely caused by depletion of reduction equivalents
followed by ATP depletion [83]. In the long term, STZ
induces a state of metabolic imbalance characterized by
impaired insulin secretion (reviewed in [78]) and inflam-
mation [84]. Intracerebroventricular (ICV) [85-87] or in-
tracerebral [88] STZ injection induces impaired brain
insulin signaling in rodents. Regardless of the route of
administration, the animals develop neuroinflammation
and cognitive deficits. The following discussion focuses on
the ICV injection of STZ.
A single ICV injection of 1 or 3 mg/ml STZ in rats

has been shown to cause chronic neuroinflammation,
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dilation of the ventricles, and atrophy of the septum
with reduction of neuronal cell counts [89]. Both STZ
concentrations cause these effects; however, they are
more pronounced at 3 mg/ml [89].
When administered to transgenic models of AD, ICV-

STZ was shown to exacerbate neuroinflammation, cognitive
deficits, plaque pathology, and tau hyperphosphorylation
[90,91], indicating that STZ renders the brain more suscep-
tible to the pathological hallmarks of AD. Similar exacerbat-
ing effects were observed when STZ was administered
intraperitoneally to AD transgenic mice [92-94].
Chen and coworkers have recently compared ICV-STZ

wild-type and the widely used 3xTg AD mouse models
[85]. Immunohistochemical studies showed early and ex-
tensive neuroinflammation in the ICV-STZ mice, charac-
terized by increased astroglial and microglial activation
especially in hippocampal CA1, CA3, and dentate gyrus
[85]. STZ-induced neuroinflammation was more pro-
nounced as compared to neuroinflammation in 3xTg mice
in the same regions [85].
In the ICV-STZ wild-type model, neuroinflammation

was detectable 1 week after low-dose ICV-STZ injection
while paraventricular Aβ depositions and hippocampal
hyperphosphorylated tau appeared within 3 months of
ICV-STZ injection [89,85]. With high-dose ICV-STZ in-
jection, however, tau hyperphosphorylation was detect-
able as early as 4 weeks in rats [95] and 6 weeks in mice
[85]. Within 3 weeks of STZ injection in wild-type mice,
spatial and short-term memory deficits developed, indis-
tinguishable from cognitive deficits in 3xTg mice.
All in all, the ICV-STZ model not only displays neuro-

inflammation but also reproduces tau [85] and amyloid
[89] pathologies as well as AD-like cognitive deficits
[96,97] with a chronology compatible with the inflam-
mation hypothesis of AD [13].

Okadaic acid-induced neuroinflammation
A comparable model to STZ-induced neuroinflammation
is okadaic acid (OKA)-induced neuroinflammation. OKA
is a major polyether toxin that selectively inhibits serine/
threonine phosphatases 1 and 2A [98]. The decreased ac-
tivity of protein phosphatase 2A (PP2A) has been ob-
served in the pathology of AD [99] and was proposed to
be involved in hyperphosphorylation of tau [100].
In line with the abovementioned molecular link to AD

pathology [101], (ICV) OKA injection develops memory
impairment in rats [102,103], making it suitable for fur-
ther characterization as a potential AD model [104]. In
studies performed by Arendt and colleagues [105], ICV
infusion of OKA (70 ng/day; for up to 4 months), could
replicate some AD-associated pathologies including
hyperphosphorylation of tau (at Ser-202/Thr-205) and
apoptotic cell death within 2 weeks, as well as cortical
deposition of non-fibrillar Aβ within 6 weeks of infusion.
Interestingly, Lee and colleagues later confirmed the for-
mation of paired helical filaments of tau following intra-
hippocampal injection of OKA (1 mM, 0.5 ml) [106]. It is
noteworthy, however, that in this model, hyperphosphory-
lated tau aggregates do not develop into NFTs [105].
In addition to AD-like histopathological changes, in a

recent study, memory impairment was reported in the
Morris water maze test 15 days after ICV-OKA (200 ng)
injection [107]. In contrast to control and vehicle groups,
OKA 200 ng treated rats did not present significant de-
crease in latency time to reach the platform in the second
and third sessions as compared to the first session [107].
Interestingly, OKA-induced memory impairment is found

to be associated with neuroinflammation [108]. In OKA-
injected rats, neuroinflammation was characterized by in-
creased expression of proinflammatory cytokine TNF-α
and IL-1β as well as total nitrite in both hippocampus and
cortex [107].
However, the effect of antidementic (non-antiinflam-

matory) drugs on subsiding the neuroinflammation sup-
ports the reactive rather than the causative role of
neuroinflammation (with regard to neurodegeneration)
in this model [109,103]. Thirteen days of pretreatment
of OKA-injected rat with anti-dementic drugs meman-
tine (10 mg/kg) and donepezil (5.0 mg/kg) could protect
not only the ICV-OKA-induced memory impairment
but also the associated changes in TNF-α, IL-β, and total
nitrite levels as well as expressions of iNOS and nNOS
[107,110]. In addition, recent studies have shown that
OKA-induced oxidative stress [111,112] is linked to
dysfunction of astrocytic neuroprotection [102]. Twelve
days after intra-hippocampal injection of OKA (100 ng),
rats developed spatial cognitive impairment, accompan-
ied by hippocampal astrogliosis (as evident by, increased
GFAP), and oxidative stress (for example, decreased glu-
tamine synthetase and decrease in reduced glutathione
content) [102]. Thus, the application of this model as an
etiology-based model of neuroinflammation in LOAD
requires further characterization of the sequence of dif-
ferent pathological events, including the possible prece-
dence of oxidative stress.

Colchicine-induced neuroinflammation
Similarly, ICV injection of colchicine in rats could induce
AD-like pathology with consequential cognitive and be-
havioral alterations similar to AD [113]. Colchicine is a
cytotoxic agent that irreversibly binds to tubulin mole-
cules and thus halts the aggregation of tubulin dimers to
the fast growing end, causing disruption of microtubule
polymerization [114]. Blocking axoplasmic transport, col-
chicine severely damages hippocampal granule cells and
mossy fibers, eventually leading to neuronal loss, which
manifests with cognitive impairment and spontaneous
motor activity [115]. Systemic and neurologic symptomatology
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of rats in response to the central administration of high-
dose colchicine is further detailed in [113].
Neuroinflammation plays a key role in the development

of AD-like neurodegeneration in this model [113,116,117].
In a recent study, Ho and colleagues found both in vitro
and in vivo evidence for the involvement of COX-2-
mediated apoptotic mechanisms in colchicine-induced
neurotoxicity [116]. After intra-hippocampal injection of
colchicine in rats, a significant increase in COX-2 mRNA
levels was found in dentate gyrus granule cells, followed
by apoptotic morphological changes [116]. Similarly, Sil
et al. demonstrated that colchicine-induced neurodegener-
ation is mediated by COX-induced neuroinflammation
[117]. In this study, the TNF-α level of the hippocampus
was significantly higher in the colchicine-injected (15 μg,
ICV) rats compared to control and sham-operated rats.
Likewise, the nitrite level and the ROS level of hippocam-
pus were also significantly higher in colchicine-induced
neurodegeneration compared to controls and sham-operated
rats [117]. This study also reported significant increase in
amyloid plaques found in the hippocampus. It is note-
worthy that naproxen administration (doses 5, 10, or 20
mg/kg) could prevent from TNF-α increase and reduce
the amyloid plaque formation [117].
Of note, AD-like tau pathology, however, does not occur

in colchicine model [118]. In fact, although colchicine leads
to microtubule breakdown [118], as seen in Alzheimer’s
disease, its mechanism is based on tau dephosphorylation
rather than hyperphosphorylation [119,120]. The chrono-
logical association of the pathological events with neuroin-
flammation is yet to be investigated in this model. Without
chronological characterization, it is unclear if this model is
compatible with the inflammation hypothesis of AD.

Genetically manipulated models (unrelated to mutations
in familial AD)
IL-1β overexpression model
Interleukin-1β (IL-1β), regulating acute and chronic neu-
roinflammatory responses (reviewed in [121,122]), is found
elevated in AD patients [123,121,124,125]. Based on this
notion, O’Banion and coworkers have developed an indu-
cible IL-1β overexpression model of chronic neuroinflam-
mation (IL-1β excisional activation transgenic (XAT)
mouse model) [126]. Prolonged IL-1β elevation induces
microgliosis and astrogliosis alongside with chronic ele-
vation of the proinflammatory cytokines, IL-6 and TNF-
α [126]. After activation of the inducible transgene in
this model, neuroinflammation may last as long as 10
months [126].
IL-1β transgenic mice displayed a dualistic histopatho-

logical presentation with respect to the hallmarks of AD.
On the one hand, APP production and processing are
unaltered despite prolonged overexpression of the trans-
gene [126]; and notably, the amyloid plaque burden was
even reduced in crossed IL-1β XAT and APP/PS1 Tg
mice [126,127]. On the other hand, crossing IL-1β XAT
and 3xTg AD mice led to significant exacerbation of tau
hyperphosphorylation within 1 month of IL-1β overex-
pression [128]. It is conceivable that in this model, IL-1β
per se induces activation of microglia without shifting it
to a dysfunctional hyper-reactive state, therefore sparing
its ability to readopt the phagocytic mode in the aid of
clearance of Aβ plaques [129].
It is likewise noteworthy that the IL-1β XAT mouse

model lacks overt neuronal loss or apoptosis within 2
and 5 months of IL-1β overexpression, respectively
[127,126]. However, despite the absence of neuronal loss,
the animals manifested significant cognitive deficits, in-
cluding contextual fear memory and spatial memory de-
fects within 3 months of transgene induction [39].
These divergent effects of IL-1β overexpression on Aβ

and tau pathology can be explained in the context of in-
flammation hypothesis of AD proposed by Krstic and
Knuesel [13]. Based on this hypothesis, tau hyperpho-
sphorylation is an early neuronal response to neuroin-
flammatory stress, while Aβ pathology emerges after
microglial shift to the pro-inflammatory M1 phenotype
as opposed to the phagocytic M2 phenotype [13]. This
implies that in the IL-1β XAT mouse model, microglia
maintain their physiological function [130] in contrast
with immune challenge-based animal models (for ex-
ample, LPS and PolyI:C injection) or neurotoxin (that is,
STZ) models.
Altogether, in spite of corroborating the association

between chronic neuroinflammation and cognitive defi-
cits, the IL-1β model could not reproduce the main le-
sions of AD pathology; therefore it may not be a suitable
model for sporadic AD.

p25 transgenic model
Neurons are considered as terminally differentiated non-
dividing cells. However, the evidence of expression of
cell cycle-specific proteins [131] and DNA replication in
neurons prior to neurodegeneration in AD-prone brain
regions [132-134] supports the association of AD neurode-
generation with cell cycle dysregulations. Regulation of the
cell cycle is performed by cyclins and cyclin-dependent
kinases (CDKs) (reviewed in [135]). CDK5, in particular,
also plays an important role in the brain development
by promoting neurite outgrowth in post-mitotic neurons
[136,137]. p35 is a regulatory subunit of CDK5 [138], and
cleavage of p25 by the calcium-dependent kinase calpain
leads to neurotoxicity through aberrant CDK5 activation
[139]. Interestingly, neurotoxicity itself drives p35 cleavage
possibly creating a vicious cycle [140].
CDK5 activation and aberrant p25 accumulation was

shown in AD patients [139]. Notably, mice overexpressing
human p25 displayed AD-like pathology [141], suggesting
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p25 overexpression as a potential mechanism to model
AD [142]. Unlike its precursor p35, the p25-CDK5 com-
plex was shown to induce tau hyperphosphorylation
possibly explaining the corollary AD-like pathology [141].
In p25 Tg mice, neuroinflammation is detectable before
other AD pathology hallmarks, including tau hyperpho-
sphorylation [143]. Said neuroinflammation is characterized
by astrocytosis and increased levels of pro-inflammatory
cytokines, like TNF-α, IL-1β, and MIP-1α [143]. Activation
of microglia was also detectable 4 weeks after induction of
p25 overexpression [143].
Interestingly, Sundaram and colleagues reported a rela-

tively clear temporal sequence between neuroinflamma-
tion and secondary pathological hallmarks associated with
AD [143]. While neuroinflammation occurred as early as
first week, tau hyperphosphorylation and amyloidogenesis
were detectable at 4 and 8 weeks after p25 induction,
respectively [143]. Finally, cognitive deficit (contextual
fear memory) was detectable within 6 weeks of p25
induction [144].
In summary, the p25 Tg mice resemble the histopatho-

logical hallmarks of AD with amyloid depositions [143],
tau hyperphosphorylation [143], and neurodegeneration
[145]. Additionally, these mice display cognitive deficits
[144]. These pathological events occur in a chronological
order compatible with the inflammation hypothesis of
AD [13].

Anti-nerve growth factor (NGF) transgenic models
The transgenic expression of anti-nerve growth factor
(NGF) antibodies led to an overt neurodegenerative
phenotype in aged mice [146,147]. This model, known as
AD11 model, resembles the insidious cognitive decline of
LOAD by manifesting with a significantly progressive def-
icit in visual recognition memory (as evaluated through an
object recognition test) and spatial memory (as evaluated
through an eight-arm radial maze), starting at 4 months
and 9 months of age, respectively [148]. Of note, in this
model, neurodegeneration was characterized by neuronal
loss, cholinergic deficit, tau hyperphosphorylation (associ-
ated with neurofibrillary pathology) and Aβ plaques [149].
The primary assumptions alluded to a link between

chronic deprivation of NGF and abnormal processing of
amyloid precursor protein, leading to Aβ excessive forma-
tion and deposition [149,150]. However, growing evidence,
including gene expression profiles [151], is showing early
involvement of neuroinflammatory elements in AD11
model [152]. Interestingly, changes in the expression of
inflammatory and immune response genes were the earli-
est and most significant [151]. Specifically, significant
changes were found in the expression of genes encoding
for proteins of the complement cascade and the major
histocompatibility complex (MHC). D’Onofrio and col-
leagues demonstrated that in AD11 model, overexpression
of C3 mRNA was significantly high as early as P30 in the
cortex and hippocampus and at P90 in all brain areas
[151]. Also, C1qb was significantly upregulated in the cor-
tex and hippocampus at P90. Similarly, a significant dys-
regulation of MHC class I gene expression was observed
in AD11, as some mRNAs of Class I MHC (in particular
H2-Q1) were severely reduced in some areas at P30 but
significantly increased at P90 [151]. This dysregulated
MHC class I expression may explain the disruption in
dynamic synaptic strength and connectivity, processes in-
volved in memory formation.
Beside the above-explained ‘non-immune’ involve-

ment of inflammatory factors in AD11 models, there is
growing evidence on their role in a concurrent neuroin-
flammation process, further aggravating neurodegenera-
tion. For example, the gene expression profiles showed
significant changes in the expression levels of other
inflammatory-related mRNAs, such as Ccl5 (chemokine
ligand 5)/RANTE, IL-1β, TNF-α, IFN-γ-induced ATPase,
Cd47, Ccl17, Cd300lf, Cd72, and Cox-2 [151]. Altogether,
AD11 mice demonstrate a complex neurotrophic and
inflammatory dysregulation in key brain regions with po-
tential role in the outset of the neurodegeneration process
described in this model [146]. However, in order to avoid
probable autoimmune reactions and achieve a more
brain-specific phenotype, an inducible NGF knockout
might be a more relevant approach.
Similarly, inflammatory response gene expression was

significantly activated in AD10 mice [153], a variant of
AD11 model without the antibody heavy chain, leading
to a similar neurodegenerative picture [154]. Interestingly,
however, when AD10 mice were housed in a murine
pathogen-free environment, the inflammatory gene re-
sponse significantly subsided, and neither an overt neuro-
degeneration nor behavioral symptoms occurred [154].
Histopathological studies that characterize the micro-

glial activation in this model are lacking. Of special
interest would be the temporal relationship of neuroin-
flammation and other AD neurodegeneration processes,
including tau pathology and amyloid deposition. Thus,
the compatibility of this model with the neuroinflamma-
tion hypothesis of AD is yet to be investigated.

TGF-β-deficient models
TGF-β is a cytokine involved in several opposing physio-
logical functions in inflammation pathways and cell
growth, depending on the target cell type, cell environ-
ment, as well as amount and duration of exposure to
TGF-β [155,24,156]. In the CNS, TGF-β is produced by
both neurons and glial cells [157]. Recent evidence from
autopsied samples of AD patients showed elevated TGF-
β in brain microvessels, leading to the release of pro-
inflammatory cytokines like TNF-β and IL-1β from
endothelial cells in the brain [158]. This is in line with
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experimental findings on TGF-β transgenic mice, show-
ing that long-term increase in expression of TGF-β is as-
sociated with increased perivascular amyloidogenesis
[156]. On the other hand, short-term increase in TGF-β
expression was neuroprotective [156]. Notably, a modest
increase of astroglial TGF-β1 expression enhanced Aβ
clearance in aged human APP transgenic mice [159],
confirming the neuroprotective role of TGF-β1. Thus
TGF-β knockout models, completely lacking the men-
tioned neuroprotective effects, have demonstrated overt
neurodegeneration (reviewed in [24]). TGF-β-/- mice
displayed neurodegeneration and neuroinflammation at
P1 and P21 without a clear temporal sequence of the two
events [160]. However, in order to create a model based
on TGF-β1 deficiency to study the inflammation hypoth-
esis of AD, the effects of TGF-β1 deficiency (and thus its
neuroprotective function) on neuroinflammatory dysregu-
lations and its potential effect on triggering AD-like neu-
rodegeneration in aged rodents should be investigated.

Discussion
The focus of this study was to recognize rodent models
of LOAD that present a process of chronic neuroinflam-
mation prior to tau and amyloid pathology, as described
by the inflammation hypothesis of AD [13]. Among models
of chronic neuroinflammation, here we found ICV-STZ
and PolyI:C-induced neuroinflammation and p25 trans-
genic (p25 tg) models most compatible with the inflam-
mation hypothesis of AD in terms of temporal ordering
of pathological events. The evidence on temporal order
of pathological events is more controversial in LPS-
and OKA-induced neuroinflammation. The timeline of
AD-related pathological events in colchicine-induced neu-
roinflammation as well as anti-NGF overexpression and
TGF-β1 knockout models is yet to be investigated. Owing
to the clear temporal order of pathological events, ICV-
STZ, PolyI:C, and p25 tg models are more suited to study
the effect of anti-inflammatory agents on different stages
of LOAD; the results of such studies may improve the
design of clinical trials for potential preventive or thera-
peutic agents.
Since most cells (for example, microglia) and molecules

(for example, TNF-α, TGF-β) of the immune system are
multifunctional [161] and sometimes even demonstrate
completely opposite functions, depending on the context
[161], neuropathological characterization of neuroinflam-
mation provides little information on its actual role in AD
pathogenesis [24]. In addition, while temporal precedence
of neuroinflammation supports its causative role in neuro-
degeneration [17], it does not rule out a physiological
neuroprotective role of an early neuroinflammatory process
against an underlying pathological process [161]. Of course,
a physiological role is much less probable in the case of
chronic neuroinflammation which by definition implies the
inability of the immune system to completely remove or
deactivate the injurious agent and then resolve [17].
The detrimental role of chronic neuroinflammation is

more clear in those models based on direct stimulation of
the immune system (that are, LPS, PolyI:C, and Il-1beta
overexpression model) [161]. For models not based on dir-
ect stimulation of immune system, further evidence is re-
quired to analyze the actual role of neuroinflammation in
respect to each stage of AD pathology. For instance, stud-
ies that demonstrated reduced AD-related symptoms and
pathology in animals pretreated with anti-inflammatory
drugs support the pathological role of neuroinflammation
in those models. For example, Dhull and colleagues re-
ported significant increase in survival of hippocampal neu-
rons and improvement in memory performance (as tested
in Morris water maze) in ICV STZ rats who received
COX-1 and Cox-2 inhibitors [162]. Similarly, adminis-
tration of naproxen (a nonspecific COX inhibitor) reduced
the amyloid plaque formation in the ICV colchicine-
induced neuroinflammation model in a dose-dependent
manner [117].
Neuropathologically, AD is characterized by extracellu-

lar amyloid plaques and intracellular neurofibrillary tan-
gles [17,163]. Although amyloid or tau pathology followed
chronic neuroinflammation in the above-discussed models,
formation of typical senile plaques and neurofibrillary
tangles, as seen in human AD, was not observed in these
studies. Instead, intermediate pathological species, like Aβ
aggregates [143] and hyper-phosphorylated tau [97,141],
were considered as signs of amyloid and tau pathologies,
respectively. Of note, the recapitulation of these patho-
logical hallmarks is a great challenge in every rodent model
of AD [164].
Moreover, among the discussed studies, different types

of molecular evidence were considered as the sign of
AD-like amyloid pathology, including Aβ plaque-like
structures in STZ-induced model [96], APP containing
plaques in PolyI:C-induced model [5], increased levels
of alpha-, beta-, and gamma-secretase activity in brain
lysate, and intracellular Aβ aggregates in LPS model [50].
Similarly, the evidence of neurodegeneration was also
different among these models; for instance, LPS-induced
model led to apoptotic neuronal loss [165], while P25
transgenic model underwent extensive non-apoptotic
neuronal death [145]. Thus, from these perspectives, a
direct comparison of these animal models would be chal-
lenging. Future experiments aimed to compare the effi-
cacy of these models in recapitulating AD amyloid and
tau pathologies would be illuminating.
Finally, models reviewed in this article were those with-

out underlying genetic manipulations related to familial
AD. There are potential models that their effects on neu-
roinflammation have not yet been evaluated on wild-type
animals. For example, degeneration of the locus ceruleus
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through alkylating agent N-(2-chloroethyl)-N-ethyl-bromo-
benzylamine (DSP4) in APP transgenic animals displayed
increased neuroinflammation and exacerbation of plaque
pathology and behavioral deficits [166]. Future studies on
aged wild-type animals can provide evidence for application
of this model in sporadic AD.

Conclusion
Disease-specific animal models are indispensable for the
understanding of possible disease mechanisms as well as
for preclinical drug development. Undoubtedly, conven-
tional transgenic models of AD are the basis of our to-
day’s in-depth understanding of several mechanisms that
are probably involved in AD. However, since all potential
Alzheimer’s disease-modifying agents tested in these
models have failed in phase-3 clinical trials, their appli-
cation in drug discovery is under question.
Different strategies can be considered to bridge the gap

between human AD pathology and rodent AD models.
On one hand, major efforts should be undertaken to thor-
oughly characterize conventional animal models with
newly available methods [167], to allow for more realistic
translation of the results from animal models to human
LOAD. On the other hand, etiology-based models should
be established for LOAD [1]. Thus far, several hypotheses
regarding the probable etiology of AD have been sug-
gested, however, appropriate in vivo models to test these
hypotheses are still lacking. In this review, we synthesized
the current information about rodent models potentially
compatible with the inflammation hypothesis of AD [13].
All in all, the choice of an animal model should be an in-
formed decision on behalf of the investigator. Neverthe-
less, using etiology-based models of LOAD may create a
breakthrough in understanding of the disease pathology,
designing precise diagnostic modalities and discovery of
effective therapeutic agents.
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