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Abstract

the underlying mechanisms remain obscure.

neuroprotective effect of tenuigenin.

suppressing NLRP3 inflammasome.

therapy.

Background: Emerging evidence indicates that nod-like receptor family, pyrin domain-containing 3 (NLRP3)
inflammasome-induced inflammation plays a crucial role in the pathogenesis of Parkinson’s disease (PD). Thus,
inhibition of NLRP3 inflammasome activation may offer a therapeutic benefit in the treatment of PD. Tenuigenin,
a major active component of Polygala tenuifolia, has been shown to have potential anti-inflammatory activity, but

Methods: In the present study, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of
PD was established to explore the effect of tenuigenin on dopaminergic neurons in substantia nigra. We next
activated NLRP3 inflammasome in both BV2 microglia cells and adult mice to investigate the mechanisms for the

Results: We demonstrated that treatment with tenuigenin increased striatal dopaminergic levels and improved
motor impairment induced by MPTP. Also, tenuigenin significantly ameliorated the degeneration of dopaminergic
neurons and inhibited NLRP3 inflammasome activation in substantia nigra of MPTP mouse model. We further found
that tenuigenin reduced intracellular reactive oxygen species (ROS) production and suppressed NLRP3 inflammasome
activation, subsequent caspase-1 cleavage, and interleukin-1(3 secretion in BV2 microglia cells. These data indicate that
tenuigenin inhibits the activation of NLRP3 inflammasome via downregulating ROS. Correspondingly, in vivo data
showed that tenuigenin attenuates microglia activation induced by lipopolysaccharide (LPS) in substantia nigra via

Conclusions: Our findings reveal that tenuigenin protects dopaminergic neurons from inflammation partly through
inhibition of NLRP3 inflalmmasome activation in microglia, and suggest the promising clinical use of tenuigenin for PD

Keywords: Parkinson'’s disease, Tenuigenin, NLRP3 inflammasome, Microglia, Inflammation

Background

Parkinson’s disease (PD) is one of the most common
neurodegenerative disorders, characterized by a progres-
sive loss of dopaminergic neurons in substantia nigra
compacta (SNc) and depletion of dopamine in the stri-
atum, leading to debilitating problems with resting
tremor, rigidity, bradykinesia, and gait disturbance [1].
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While the pathogenic mechanisms that ultimately cause
PD are still unclear, it is believed that the progressive
nature of PD is characterized by chronic inflammation-
induced dopaminergic neuronal degeneration. The hall-
marks of neuroinflammation are the presence of activated
microglia in the brain and increased production of chemo-
kines, cytokines, and neurotoxic proteins. It has been
demonstrated that in the brains of PD patients, levels of
pro-inflammatory mediators, including tumor necrosis
factor-a (TNF-a), interleukin-13 (IL-1p), IL-6, and ROS
are elevated [2]. A meta-analysis of anti-inflammatory
drug trials revealed an association between nonsteroidal
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anti-inflammatory drug (NSAID) use and reduced risk for
developing PD possibly implicating neuroinflammatory
processes in the disease [3].

Among these pro-inflammatory cytokines, IL-1 has
been recognized to be essential for initiation and pro-
gress of PD. Enhanced expression of IL-1B has been
observed both in the brain and in the periphery of PD
patients as well as animal models [4, 5]. The matured
IL-1p is tightly controlled by cytosolic multiprotein com-
plexes called “inflammasomes,” which recognize a large
number of stimuli, such as danger-associated molecular
patterns (DAMPs) and pathogen-associated molecular
patterns (PAMPs). The NLRP3 inflammasome is highly
expressed in microglia and essential to the process of
neuroinflammation [6, 7]. It composed of nod-like
receptor protein NLRP3, adaptor protein ASC, and pro-
caspase-1, then activated by lots of stimuli, including
bacterial, fungal, and viral components, and endogenous
danger molecules such as extracellular adenosine 5'-tri-
phosphate (ATP), uric acid crystals, silica crystals, and
amyloid-p. The activation of NLRP3 inflammasome pro-
motes the maturation and release of IL-1pB, so it plays
critical roles in the initiation of inflammation [8, 9]. In
our previous studies, we had reported the NLRP3
inflammasome involved in the pathogenesis of PD and
might be a potential target for PD therapy [10, 11].

Tenuigenin (TEN) is a natural extract from Polygala
tenuifolia root, a traditional Chinese herb that has been
widely prescribed in traditional Chinese medicine for
treating amnesia, neurasthenia, insomnia, palpitation, and
cognitive dysfunction for thousands of years. It had re-
ported tenuigenin possesses various pharmacological
activities for anti-oxidant, anti-aging, and anti-
inflammatory. For example, in vitro, tenuigenin inhibited
LPS-triggered inflammatory cytokine production includ-
ing prostaglandin E, (PGE,), cyclooxygenase-2 (COX-2),
and inducible nitric oxide synthase (iINOS) in macro-
phages [12]. Furthermore, tenuigenin exhibited protective
effects against LPS-induced acute kidney injury in mice
[13]. Notably, our previous studies demonstrated that
tenuigenin protected dopaminergic neurons from inflam-
mation induced by intraventricular injection of LPS in rats
[14]. Tenuigenin also protected SH-SY5Y cells from 6-
hydroxydopamine (6-OHDA)-induced damage [15]. These
results indicate that tenuigenin exerts neuroprotection in
the progression of PD. Although the anti-inflammatory ef-
fect of tenuigenin and its implication in the pathology of
PD are emerging, the mechanisms are still poorly
understood.

In the present study, we prepared a classic systemic
PD model based on the administration of MPTP, which
has selective toxicity for dopaminergic neurons. Then,
we explored the effects of tenuigenin on motor behavior,
dopamine content, dopaminergic neuronal degeneration,
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and NLRP3 inflammasome activation. Furthermore, we
activated NLRP3 inflammasome in both BV2 microglia
cells and adult mice to clarify the anti-inflammatory ef-
fect of tenuigenin. Our study demonstrates that tenui-
genin protects dopaminergic neurons in the substantia
nigra of PD mice via suppressing NLRP3 inflammasome
activation in microglia, suggesting that tenuigenin may
be a promising drug for PD therapy.

Methods

Antibodies and reagents

Tenuigenin (molecular formula: C3oH45ClOg; average mo-
lecular weight: 537.14 kDa, chemical structure showed in
Fig. 1) was purchased from the Chinese National Institute
for the Control of Pharmaceutical and Biological Products
(111572-200702) with a purity of 98.7%. LPS (Escherichia
coli 0111:B4, L4391), MPTP (MO0896), ATP (A2385), and
MSU (U2875) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Mouse IL-1p ELISA Kits were
purchased from R&D Systems. ROS-specific fluores-
cent probe cell-permeant 2',7'-dichlorodihydrofluores-
cein diacetate (H2DCFDA) was purchased from
Invitrogen (Thermo Fisher Scientific Inc., USA). The
antibodies used in this study are the following: rabbit
monoclonal anti-NLRP3 (1:1000, Cell Signaling Tech-
nology, Beverly, MA, USA), rabbit anti-caspase-1
(1:800, Santa Cruz Biotechnology, USA), goat anti-IL-
1B (1:800, R&D Systems, Minneapolis, USA), mouse
monoclonal anti-B-actin  (1:5000, Sigma-Aldrich),
mouse monoclonal anti-tyrosine hydroxylase (TH,
1:1000, Sigma-Aldrich), and rabbit polyclonal anti-
ionized calcium-binding adaptor molecule 1 (Iba-1,
1:500, Wako, Osaka, Japan). The reagents obtained
from other sources are detailed throughout the fol-
lowing text.
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Fig. 1 Chemical structure of tenuigenin
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Animal models and drug administration

Animals were maintained under specific pathogen-free
conditions and treated according to the protocols ap-
proved by IACUC (Institutional Animal Care and Use
Committee of Capital Medical University).

MPTP acute model: Male C57BL/6] mice (12-week)
were randomly divided into five groups: saline, MPTP,
and MPTP plus tenuigenin (low dose, 25 mg/kg), MPTP
plus tenuigenin (high dose, 50 mg/kg), and tenuigenin
(high dose, 50 mg/kg) alone. Mice were pre-treatment
daily with tenuigenin for 10 days and then given MPTP
(20 mg/kg) intraperitoneally four times at 2-h interval
after tenuigenin administration. The same volume of
saline was injected in the vehicle group. Two days after
the last injection, behavioral assessments were per-
formed using the open field test and rotarod test. After
that, all animals were sacrificed for further study.

LPS acute model: Male C57BL/6] mice (12-week) were
randomly divided into four groups: saline, LPS, and LPS
plus tenuigenin (25 mg/kg) and LPS plus tenuigenin
(50 mg/kg). To induce NLRP3 activation and IL-1p se-
cretion, mice were injected intraperitoneally with LPS
(20 mg/kg) alone and LPS plus tenuigenin (25 mg/kg or
50 mg/kg). After 6 h, the serum samples were collected
and the IL-1pB level was measured by ELISA. Animals
were sacrificed, and brains were harvested.

Open field test

Spontaneous locomotor activity was assessed using the
open field test in a Tru Scan 2.0 system (Coulbourn In-
struments, Allentown, PA, USA). Locomotor activity
was assessed in automated activity chambers connected
to a digital scan analyzer that transmitted the number of
infrared beam breaks (activity data) to the instrument.
Total movement distance (cm) was recorded across a
60-min recording period.

Rotarod test

An accelerating rotarod was used to evaluate motor co-
ordination and balance. Mice were placed on a rotating
rod (Rota Rod Rotamex 5, Columbus Instruments, USA)
at a speed of 5 rounds per minute. The speed of the
rotarod accelerated to 40 rounds per minute. The
latency time (sec) falling from the rod was automatically
recorded. Each mouse was given three trials, and the
latency times were averaged.

High-performance liquid chromatography (HPLC)

The dopamine (DA) contents, and its metabolites dihydrox-
yphenylacetic acid (DOPAC) and homovanillic acid (HVA)
in striatum, were determined using an HPLC apparatus with
an electrochemical detector (Model 5600A CoulArray De-
tector System ESA, MA, USA). Tissues were homogenized
in 200 mM ice-cold perchloric acid and the homogenate
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placed in an ice bath for 60 min. The sample was then cen-
trifuged at 15,000g for 20 min at 4 °C, and the supernatant
was transferred to a clean tube. A one-half volume of the so-
lution containing 20 mM potassium citrate, 300 mM potas-
sium dihydrogen phosphate, and 2 mM NaEDTA was
added and mixed thoroughly to precipitate the perchloric
acid. After incubating in an ice bath for 60 min, the mixture
was centrifuged at 15,000¢ for 20 min at 4 °C. The super-
natant was filtered through a 0.22-pm filter and injected into
the HPLC system. The mobile phase was 125 mM sodium
citrate buffer supplemented with 20% methanol, 0.1 mM
Na,EDTA, and 0.5 mM 1-octanesulfonic acid sodium salt.
The flow rate was set at 1.2 mL/min.

Immunohistochemical studies and quantitative evaluation
Brain samples were collected and postfixed in 4% PFA at
4 °C overnight. They were transferred to 15% sucrose in
phosphate-buffered saline (PBS) overnight and then to
30% sucrose overnight till the brain sunk to the bottom
of the tube. Coronal sections (30 pm) were cut by a
freezing microtome (Leica, Germany) and stored in an
antifreeze solution. Sections of substantia nigra were col-
lected for immunohistochemistry according to a previ-
ous report [16]. Briefly, they were incubated overnight
with the antibody against TH or Iba-1 overnight at 4 °C.
After rinsing three times with PBS, sections were incu-
bated with a second antibody (1:200) and AB work solu-
tion (Vector Laboratories, Burlingame, CA, USA) for
30 min at 37 °C. DAB solution was used to visualize the
staining.

Images were observed, and photos were taken under a
confocal microscope (Axiovert LSM510, Carl Zeiss Co.,
Germany). The immunostaining signals were quantita-
tively analyzed using the Optical Fractionator method
with Microbrightfield Stereo-Investigator software (Ste-
reo Investigator software, Microbrightfield, VT, USA).
The total number of TH-IR neuron and Iba-1-IR micro-
glia in the entire extent of SNc were counted. Briefly,
the regions of SNc in the midbrain sections were out-
lined at low magnification (x40). For TH" and Iba-1*
cells, the counting frame size was 50 pm x 50 um and
the sampling grid size was 100 um x 100 pm. All stereo-
logical analyses were performed under the x200 magnifi-
cation. The sampling scheme was designed to have a
coefficient of error < 10% in order to get reliable results.
Each brain contained 6 serial sections at 6 intervals. For
immunohistochemical staining, select one series of sec-
tions per mouse. The total numbers of immunoreactive
cells in the entire extent of SNc were counted from 4 to
6 mouse brains per group.

Cell culture and treatment
Murine BV-2 microglia cells were maintained in
DMEM/F12 (1:1) media supplemented with 10% fetal
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bovine serum and antibiotics at 37 °C in a humidified
incubator under 5% CO,. For inducing inflammasome
activation, 1 x 10° cells were plated in 6-well plate over-
night and the medium were changed to opti-MEM in
the following morning, and then, the cells were primed
with LPS (500 ng/ml) for 3 h. After that, the cells were
stimulated with 2.5 mM ATP for 30 min or 150 pg/ml
monosodium urate crystals (MSU) for 4 h.

Measurement of intracellular ROS formation

The ROS-specific fluorescent probe H2DCFDA was
used to detect intracellular generation of ROS by modifi-
cation. After drug treatment, BV2 cells were incubated
with 10 uM DCEDA for 30 min. After washing 3 times
with PBS, the intensity of fluorescence was determined
by a multimode reader (Vario Skan Flash, 3001, Thermo
Scientific) under an emission wavelength at 530 nm and
excitation wavelength at 485 nm. The obtained values
were presented as folds of the controls.

Enzyme-linked Immunosorbent assay (ELISA)

Cells were treated with different stimuli. The concentra-
tion of IL-1P in the cell culture supernatant or serum
was measured by mouse IL-1 ELISA Kit according to
the manufacturer’s instructions.

Purification of cell culture supernatant protein

The cell culture supernatant was collected and centrifuged
to remove dead cells, and the supernatant was transferred
into new tubes. Then, 500 pL methanol and 125 pL
chloroform were added to precipitate supernatant, vortex,
and centrifuge 16,000¢ for 5 min. The upper phase was
discarded without touching the protein disk, and 500 pL
methanol was added for washing and centrifuged at
16,000¢ for 5 min. The supernatant was removed, and the
pellet was dried at 37 °C for 5 min. Ultimately, 50 pL
2.5 x loading buffer was added with DTT and vortex. The
samples were boiled and loaded on 15% gels.

Western blotting analysis

Tissues and cells protein lysates were quantified by
Bradford assays (Bio-Rad, Hercules, CA, USA).
Proteins were electrophoresed through a 8-15% SDS-
polyacrylamide gel and blotted to PVDF membrane.
Blots were probed with the following primary anti-
bodies: anti-NLRP3 (1:1000), anti-caspase-1 (1:500),
anti-IL-1p (1:800), and anti-B-actin (1:5000). The sig-
nal was visualized using an Odyssey Infrared Imaging
System (LI-COR Biosciences, Lincoln, NE, USA)
according to the manufacturer’s instructions. The
signals were also monitored by the Odyssey IR im-
aging system.
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Statistical analysis

All values are expressed as the mean + SEM and were ana-
lyzed by one-way ANOVA or Student’s ¢ test as appropri-
ate by using Prism 5.0 software (GraphPad Software, San
Diego, CA). P < 0.05 was considered significant.

Results

Tenuigenin improves motor impairment and increases
dopamine level in the striatum of MPTP PD mice

A classic systemic model is based on the administration
of MPTP, with selective toxicity for dopaminergic neu-
rons [17]. To explore the neuroprotective effects of
tenuigenin in PD, we established a MPTP-induced acute
model of PD in adult mice and determined whether
tenuigenin improved MPTP-induced motor deficits. Ex-
perimental procedure and drug administration are
shown in Fig. 2a. Open field test is a commonly used
method to evaluate motor impairment. As shown in
Fig. 2b, MPTP group was found to have a significant re-
duction in total movement distance compared to the sa-
line group. MPTP mice pretreated with tenuigenin in
both high dose (50 mg/kg) and low dose (25 mg/kg) ex-
hibited an improvement in locomotor activity compared
to MPTP group. Then, we used an accelerating rotarod
test to determine motor coordination and balance. As
shown in Fig. 2c, MPTP injections remarkably decreased
the latency time compared with those in the saline treat-
ment group. Moreover, high dose of tenuigenin dis-
played better effect on the improvement of motor
behavior. These results indicate that tenuigenin ad-
ministration = recovered =~ MPTP-induced  motor
impairment.

Furthermore, we detected the levels of DA and its me-
tabolites, DOPAC and HVA, in the striatum by HPLC
analysis. The results showed that these neurotransmitter
substances in MPTP PD mice were significantly de-
creased by 44.4, 56.3, and 54.5%, respectively, compared
with those in saline-treated mice. However, treatment of
MPTP PD mice with 50 mg/kg tenuigenin increased DA
level compared with untreated PD mice, while the levels
of DOPAC and HVA did not significantly increase
(Fig. 2d—f). Then, we calculated the ratio of (DOPAC +
HVA)/DA which represented the rate of DA metabolism.
As shown in Fig. 2g, high dose of tenuigenin decreased
the rate of DA metabolism accelerating by MPTP. These
results suggest that tenuigenin inhibited DA metabolism
and elevated DA level in the striatum of MPTP PD
mice.

Tenuigenin protects dopaminergic neurons against MPTP-
induced degeneration and suppresses NLRP3 inflamma-
some activation in substantia nigra

To demonstrate whether tenuigenin protects dopamin-
ergic neurons from MPTP damage, we detected tyrosine



Fan et al. Journal of Neuroinflammation (2017) 14:256

Page 5 of 12

a Pre-treatment
with TEN

MPTP 20mg/kg, i.p.
4 times at 2h interval

A A A A A A A

Behavioral
testing

Sacrifice

A 4

I T
-10d 0d

9000

E 8000
<

g 7000

*

6000

3 5000
S

8 4000

— 3000
£

1© 2000

1000

0

%".}\(\0

7000 4

o

6000 4
5000 4 "
4000 -
3000 bl

2000

DA (ng/g wet tissue weight)

1000 4

<2 Q »
%Q}\O \é{\ v

—h

900
800

700
600
500 *
400
300
200
100
0

HVA (ng/g wet tissue weight)

(DOPAC+HVA)/DA
(the ratio of turn over)
°
8
¥

Fig. 2 Tenuigenin improved motor behavior and increased dopamine levels in MPTP acute model mice. a Experimental procedure and drug

1 1
1d 3d

Cc

250
200
150

100

Latency time (s)
*
*
*

50

0

(1]

2500

2000

1500

1000 4

500

DOPAC (ng/g wet tissue weight)

«

1.00 4

0.75 4

& N & g?
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\

hydroxylase in SNc by immunohistochemistry. As
shown in Fig. 3a, administration of MPTP resulted in
a 38.9% loss of TH" neurons in SNc¢ compared with
those in saline-treated mice. Interestingly, high dose
(50 mg/kg) of tenuigenin significantly increased the
number of TH® neurons by 49.2% in the SNc of
MPTP PD mice, while low dose (25 mg/kg) of tenui-
genin increased by 20.6%. These results indicate that
tenuigenin exerts a beneficial effect on dopaminergic
neuronal degeneration.

Activation of microglia in both striatum and substantia
nigra had been well documented to occur in the MPTP
model of PD [2, 18]. Our previous studies had reported
the NLRP3 inflammasome was activated in the substan-
tia nigra of MPTP mice [11]. So we examined whether
tenuigenin had an impact on the activation of NLRP3
inflammasome. As shown in Fig. 3c—g, MPTP treatment
significantly evaluated the levels of inflammasome in-
cluding NLRP3, caspase-1, pro-IL-1p, and IL-10, while
tenuigenin suppressed the activation of NLRP3
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inflammasome in substantia nigra, especially with the
high dose of tenuigenin. These date imply that tenui-
genin inhibits the activation of NLRP3 inflammasome
induced by MPTP in substantia nigra.

Tenuigenin inhibits NLRP3 inflammasome activation in
BV2 microglia cells

Then, we sought to determine whether tenuigenin has an
effect on NLRP3 inflammasome activation in vitro. We

used an immortalized murine microglial cell line, BV2, be-
cause it is an ideal alternative model system for primary
microglia cultures [19]. The NLRP3 inflammasome is acti-
vated by endogenous stress-associated danger signals, such
as ATDP, nigericin, and MSU [9]. Since inflammasome acti-
vation is secretion of the cleaved bioactive form of IL-1p,
researchers working in the inflammasome field typically
“prime” the cells with LPS before performing the actual
stimulation of the inflammasome with activators.
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Therefore, LPS-primed BV2 cells were pre-treated with
tenuigenin before ATP challenge in the presence or
absence of tenuigenin for 24 h. The results showed ATP
induced caspase-1 activation and increased IL-1( produc-
tion in BV2 microglia. The expression levels of those com-
ponents of inflammasome, such as NLRP3, caspase-1,
pro-IL-1f, and IL-1f, were downregulated by tenuigenin
in a concentration-dependent manner (Fig. 4a—e). In par-
ticular, the inhibition of IL-1p secretion in cell supernatant
also followed in a dose-dependent manner by Western
blot and ELISA analysis (Fig. 4f). These data indicate that
tenuigenin indeed can suppress NLRP3 inflammasome
activation in microglia. To dissect the underlying molecu-
lar mechanisms, we measured the ROS production, which
is believed to be a common NLRP3 activator. As shown in
Fig. 4g, LPS-primed BV2 cells were pretreated with tenui-
genin in different concentration before ATP challenge.
High dose (8 uM) of tenuigenin remarkably decreased
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ATP-induced ROS production as detected by the fluores-
cence of H2DCFDA in BV2 microglia.

In order to find whether tenuigenin only affect ATP-
induced NLRP3 inflammasome activation, we examined
another NLRP3 agonists, MSU. As shown in Fig. 5a—f,
tenuigenin inhibited caspase-1 cleavage and IL-1f secre-
tion induced by MSU, coincident with the result induced
by ATP. The observed inhibitory effects of tenuigenin
on NLRP3 inflammasome activation were also con-
firmed. These results suggest that tenuigenin is a potent
and broad inhibitor for NLRP3 inflammasome
activation.

Tenuigenin attenuates microglia activation induced by
LPS via suppressing NLRP3 inflammasome in substantia
nigra

LPS, the principal component of the outer membrane of
Gram-negative bacteria, is used to raise pro-IL-1p levels
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comparison with LPS+ATP group
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prior to the NLRP3 inflammasome stimulation. Periph-
eral administration of LPS alone could activate microglia
in the brain and lead to inflammasome activation in vivo
[20, 21]. Therefore, we detected whether tenuigenin can
inhibit the activation of microglia and NLRP3 inflamma-
some in vivo by the treatment of LPS. Mice were
injected intraperitoneally with LPS in the presence or
absence of tenuigenin. After 6 h, the serum samples and
brains were harvested. We performed immunohisto-
chemistry with the classic antibody specific for Iba-1 to
assess morphological microglia activation in SNc. The
results showed that a large number of activated

microglia with enlarged cell bodies (arrows shown in
Fig. 6a) were observed in the SNc of LPS-treated mice
compared with the saline group, while tenuigenin
administration dramatically suppressed the activation of
microglia in SNc (Fig. 6a, b). Furthermore, tenuigenin
treatment significantly decreased serum IL-1p produc-
tion ascending by LPS (Fig. 6c). Then, we wanted to
know whether tenuigenin can prevent NLRP3 inflamma-
some activation induced by LPS in vivo. To address this
question, we precisely isolated the tissues of ventral mid-
brain in each group. Western blotting analysis revealed
that LPS significantly increased NLRP3, caspase-1,
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with Iba-1 to visualize the activation of microglia in the SNc of each group. Scale bar represents 200 um (upper) or 50 um (under). b Stereological
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pro-IL-1B, and IL-1( expression, and this effect was re-
versed by tenuigenin treatment especially in the high-dose
group (Fig. 7a—e). These results suggest that tenuigenin
can inhibit the NLRP3 inflammasome activation in vivo.

Discussion

In the present study, we demonstrated tenuigenin, a
major active component of Polygala tenuifolia root,
exerted the neuroprotective effects on dopaminergic
neurons in MPTP mouse model of PD. We further
found that tenuigenin inhibits the NLRP3 inflammasome
activation both in vitro and in vivo. Our findings indi-
cate that tenuigenin may target the NLRP3 inflamma-
some in microglia to attenuate MPTP-triggered
neuronal degeneration, suggesting the potential of tenui-
genin in prospective therapy for PD.

Our previous studies had demonstrated that tenui-
genin exhibited the neuroprotective effects in neurode-
generative diseases [14, 15]. Nevertheless, it remains
unclear whether tenuigenin plays a crucial role in animal
models of PD. MPTP mouse model remains the most
commonly used animal model of PD, which aims to re-
produce the pathological and behavioral changes of the
human disease [17]. In this study, we used the MPTP
acute mouse model to evaluate the effect of tenuigenin
on the protection of dopaminergic neurons. Because
tenuigenin can pass through the blood-brain barrier

easily due to its lipophilic characteristics and small mo-
lecular size, we pre-treated the drug for 10 days by intra-
peritoneal injection before administration with MPTP.
The data showed tenuigenin improved MPTP-induced
motor deficits and elevated DA level in the striatum.
Also, tenuigenin markedly ameliorated the degeneration
of dopaminergic neurons in SNc and decreased the ex-
pression of NLRP3 inflammasome components. The re-
sults confirmed the therapeutic effect of tenuigenin on
MPTP mouse model of PD and showed the anti-
inflammatory role of tenuigenin may target with NLRP3
inflammasome.

Increasing evidence including our previous studies had
already shown that the NLRP3 inflammasome is in-
volved in the progression of PD [10, 11, 22, 23]. NLRP3
inflammasome-mediated IL-1p production requires two
signals. The first signal induces nuclear transcription
factor-kB (NF-kB) to increase the expression of NLRP3
and prolL-1p, which is a prerequisite for inflammasome
activation. The second signal directly activates the
NLRP3 inflammasome to induce caspase-1 cleavage,
leading to the maturation of IL-1p. NLRP3 protein ex-
pression levels have been shown to be a limiting step in
inflammasome activation [24, 25]. In order to confirm
the effect of tenuigenin on NLRP3 inflammasome, we
activated the NLRP3 inflammasome in BV-2 microglial
cells by ATP or MSU, which are the activators of NLRP3
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inflammasome. Here, we found that tenuigenin reduced
the expression of NLRP3 and pro-IL-1p in BV2 micro-
glia. We also observed that tenuigenin suppressed acti-
vation of caspase-1 and the maturation of IL-1f in
response to NLRP3 activators including ATP and MSU.
These data indicate that tenuigenin inhibits both the
priming (signal 1) and the activation (signal 2) of the
NLRP3 inflammasome. NLRP3 was originally hypothe-
sized to be a cytosolic receptor, with such a broad range
of stimuli demonstrated to cause its activation. ROS,
produced by many known activators of NLRP3 inflam-
masome, are shown to be a critical mechanism trigger-
ing NLRP3 inflammasome formation and activation [26,
27]. In this study, we found that tenuigenin decreased
the ROS production induced by LPS and ATP in BV2
microglia. These data demonstrate that tenuigenin in-
hibits the activation of NLRP3 inflammasome through
controlling the production of ROS.

Microglia activation has been known to play an im-
portant role in neuroinflammation of PD. Activated
microglia release various pro-inflammatory and cyto-
toxic factors, such as IL-1P, IL-6, TNF-«, and ROS. The
accumulation of these factors is considered to contribute
to the progressive loss of dopaminergic neurons. The
pharmacologic regulation of microglial activation could
protect dopaminergic neurons from inflammatory injury
[28, 29]. Peripheral administration of LPS could activate
microglia in the brain and lead to inflammasome activa-
tion which might through the indirect way (e.g., by indu-
cing the release of endogenous NLRP3 activators such as
ATP or uric acid) [21, 30]. Here, we activated microglia
and NLRP3 inflammasome through acute treatment with
LPS by intraperitoneal injection. Iba-1 immunohisto-
chemistry showed a large number of activated microglia
cells were observed in the SNc of LPS-treated mice.
Tenuigenin administration remarkably suppressed the
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Fig. 8 Schematic illustration demonstrates that tenuigenin protects dopaminergic neurons from inflammation via controlling the production of

activation of microglia in the brain and decreased serum
IL-1p production increasing by LPS. Furthermore, tenui-
genin treatment abolished LPS-induced activation of
NLRP3 inflammasome in substantia nigra. These results
suggest that tenuigenin alleviates microglia activation in
SNc and inhibits NLRP3 inflammasome activation in
vivo.

Conclusions

Our results demonstrate that tenuigenin exerts the neuro-
protective effects on dopaminergic neuronal degeneration
and motor deficits in MPTP PD mice. Our results also
demonstrate that tenuigenin can prevent neurotoxin-
induced neuroinflammation via controlling the production
of ROS and inhibiting NLRP3 inflammasome in microglia
(Fig. 8). Collectively, our findings reveal that tenuigenin
confers an anti-inflammation effect partly through inhibit-
ing NLRP3 inflammasome activation, and suggest the
promising clinical use of tenuigenin in NLRP3 inflamma-
some driven inflammatory diseases such as PD.
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