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Necroptosis: a regulated inflammatory
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Abstract

Programmed cell death has a vital role in embryonic development and tissue homeostasis. Necroptosis is an alternative
mode of regulated cell death mimicking features of apoptosis and necrosis. Necroptosis requires protein RIPK3
(previously well recognized as regulator of inflammation, cell survival, and disease) and its substrate MLKL, the crucial
players of this pathway. Necroptosis is induced by toll-like receptor, death receptor, interferon, and some other
mediators. Shreds of evidence based on a mouse model reveals that deregulation of necroptosis has been found to be
associated with pathological conditions like cancer, neurodegenerative diseases, and inflammatory diseases. In this
timeline article, we are discussing the molecular mechanisms of necroptosis and its relevance to diseases.
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Background
Cell demise and its survival are the fundamental features
of metazoans to maintain the tissue homeostasis. On
morphological basis, cell death is achieved by apoptosis,
necrosis, and autophagy [1]. A plethora of studies has
been performed on apoptosis and autophagy which re-
veals a clear picture of molecular mechanisms of apop-
tosis and autophagy and is recognized as a highly
regulated process. Hence, apoptosis and autophagy are
regarded as “programmed cell death” while necrosis is
considered as “unprogrammed” due to deregulated activ-
ity. Decades ago, a novel type of cell death was reported
where apoptotic pathway was inhibited, which exhibited
morphological features of both apoptosis and necrosis
and hence was termed as necroptosis [2]. Interestingly,
necroptosis is inhibited by Necrostatin-1 (Nec-1) by
inhibiting the activity of receptor-interacting protein kin-
ase 1 (RIPK1), which suggests that it is a well-regulated
process or programmed necrosis. Later studies on mor-
phological features of necroptosis confirmed that it is
the unregulated necrotic death, stimulated by the secre-
tion of cytokines/chemokines resulting in inflammation
[3]. Inflammation involves a series of reactions in

response to pathogen-infected cells resulting in the elim-
ination of infected cells as well as wound healing.
Necroptosis is a regulated necrosis mediated by death

receptors [4]. This form of necrosis works against
pathogen-mediated infections, morphologically charac-
terized by cell swelling followed by rupturing of plasma
membrane. It is well known that involvement of recep-
tor like Fas, TNF, and TRAIL can lead to cell death
through the recruitment of caspase-8 leading to initi-
ation of extrinsic apoptotic pathway [5]. A plethora of
evidences has shown that inhibition of caspase-8 mol-
ecule shift extrinsic apoptosis to necrosis mode of cell
death due to activation of RIPK3 and MLKL [6–10].
Hence, it is an alternative mode of cell death when
caspase-8-dependent apoptotic pathway is blocked. Initi-
ation of necroptosis is mediated by immune ligands in-
cluding Fas, TNF, and LPS leading to activation of
RIPK3 which further activates the MLKL by phosphoryl-
ation [10]. Phosphorylated MLKL translocates into the
inner leaflet of the plasma membrane and disturbs the
integrity of the cell [11–13]. Although RIPK3 and MLKL
is necessary for programmed cell death [10, 14, 15],
necroptosis is confined to certain types of tissue that ex-
press RIPK3/MLKL. In normal circumstances, caspase-8
molecule activates apoptosis by blocking the necroptosis
and by cleaving RIPK1 and CYLD [16–18]. Classical ne-
crosis leads to increased secretion of cytokines and de-
creased secretion of damaged associated molecular
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pattern (DAMP—endogenous molecules released in re-
sponse to tissue damage) in contrast to necroptosis.
Tumor necrosis factor (TNF) promotes the inflamma-
tory cytokine synthesis in most of cell types resulting in
various inflammatory diseases like Crohn’s disease, psor-
iasis, bowel disease, and rheumatoid arthritis [19, 20]
and regulates production of chemokines and cytokines
as primary outcomes of TNF stimulation [21]. Shifting
of TNF-mediated response into programmed necrosis is
not simply shifting of inflammation to necroptosis; it
represents shifting of robust inflammatory response into
necroptosis which terminates earlier in contrast to clas-
sical pro-inflammatory response. There are two basic
conditions for necroptosis: (1) cells must express RIPK3
and (2) inhibition of caspase-8 molecule. Recent study of
Moriwaki and Chan [22] has shown that MLKL rather
than RIPK3 decides whether cell undergoes apoptosis or
necroptosis which further suggests that expression of
MLKL is necessary for induction of necroptosis using
RIPK3 T231A/S232A mutant-expressing cells. Numer-
ous in vitro studies have reported that inhibition of
caspase-8 molecules resulted in activation of RIPK3, a
key player of necroptosis [6, 7, 23]. Duprez et al. [24]
have shown that caspase-8 inhibition might not always
be mandatory to trigger the in vivo necroptosis.

Molecular mechanism of necroptosis
Recent studies have been focused on TNFα, RIPK3, and
caspase-8 to understand the molecular mechanism of
necroptosis. Necroptosis can be initiated by TNF super-
family receptors, toll-like receptors (TLR3 and TLR4),
and interferon receptors while TNFR1-mediated necrop-
tosis is well characterized. Base on the driving factors,
necroptosis is classified into three categories: (1) Extrin-
sic necroptosis is stimulated by TNFα, (2) Intrinsic
necroptosis is stimulated by reactive oxygen species
(ROS), and (3) Ischemia mediated intrinsic necroptosis.
TNFα-mediated necroptosis is a classical necroptosis
which binds with complementary receptor leading to
formation of short-lived membrane signaling complex
(known as complex I) containing TRADD, FADD,
RIPK1, TRAF2/TRAF5, and cIAP1/cIAP2. TRADD is an
adaptor molecule recruit RIPK1 to TNFR1 [25, 26]. Sub-
sequently, cIAPs and TRAF2/3/5 are recruited to com-
plex I [27]. On activation, cIAP1/2 and TRAF2/5
mediate ubiquitination of RIPK1 which resulted in for-
mation of stable complex I and initiate alternative path-
way that culminates with cell survival pathway including
NF-кB- and MAPK-mediated pathway [28]. NF-кB sig-
naling plays a key role in counteracting the cytotoxic ef-
fect of TNFα, and prosurvival effect of NF-кB is
mediated by cIAP1/2 and cFLIPL (cellular FLICE-like in-
hibitory protein) [29, 30]. Hence, complex I is a crucial
checkpoint for cell survival and necroptosis [31].

Normally, apoptosis is inhibited by formation of a het-
erodimer of caspase-8 and cFLIPL leading to inactivation
of caspase-8. Caspase-8 induces the exogenous apoptosis
and deactivates the necroptosis by inhibiting the activity
of RIPK3 and RIPK1. Elimination or inhibition of
caspase-8 leads to activation of RIPK1 through deubiqui-
tination mediated by cylindromatosis (CYLD) [16, 32]
thus destabilizing the complex I. Removal of ubiquitin
chain from RIPK1 leads to its interaction with FADD,
TRADD, RIPK3, and caspase-8 which further resulted in
formation of complex II. RIPK1 interacts with RIPK3
through receptor homology domain (RHD) leading to
formation of necrosome which further initiates the
downstream signaling resulting in necroptosis [33].
Although both RIPK3 and RIPK1 are necessary for in-
duction of necroptosis, RIPK3 can alone promote
necroptosis when it is overexpressed in cells [34]. On ac-
tivation, RIPK3 phosphorylates the pseudokinase MLKL
(mixed lineage kinase domain-like protein) which plays a
key role in induction of necroptosis. MLKL acts in two
ways: (1) either it acts as platform in plasma membrane
for recruitment of Na+ ion or Ca++ channels or (2) pro-
motes the pore formation in plasma membrane by inter-
acting with amino terminal of phosphotidyl inositol
phosphate (Fig. 1) [10, 35]. Wang et al. [36] reported the
role of mitochondrial molecule PGAM (phosphatase
phosphoglycerate mutase)-5 in necroptosis while the role
of PGAM-5 is still controversial as many studies have
shown that even complete depletion of the mitochondria
did not influence the necroptosis processes [37].

Non-classical necrosome
In classical necroptosis, necrosome complex is formed
due to interaction between RIPK3 and RIPK1 through
the RHIM domain. Phosphorylation of these proteins at
their kinase domain promotes RHIM-mediated interac-
tions of both proteins which results in formation of
amyloid-like filamentous signaling complex [38, 39] and
culminates with necroptosis. In spite of these proteins,
many other proteins like TLR3/4, TRIF, and DAI (DNA
activator of interferon) also have RHIM domain; hence,
they can also form the necrosome which is considered
as non-classical necrosome. Further, proteins sharing the
RHIM domain may share functions in cell death signal-
ing, innate immune signaling, or both. TLR3 and TLR4
also initiate the necroptosis mediated by TRIF and
RIPK3 [40, 41]. Like RIPK3 and RIPK1, TRIF is also a
cleavage substrate for caspase-8. TRIF-dependent
necroptosis also requires interaction with RIPK3 through
the RHIM domain while the role of RIPK1 is not clear.
Several studies have reported that inhibition of RIPK1 in
TLR3-mediated necroptosis does not impair this process
[41]. Unlike RIPK, TRIF does not possess protein kinase
activity which indicates that the mechanism by which
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TRIF activates the RIPK3 is different from
RIPK1-mediated activation of RIPK3 and so this pathway
is considered as non-classical necroptosis.

Role of phospho-acceptor sites in RIPK1 and RIPK3
Phosphorylation plays a major role in controlling the ac-
tivity of proteins. Mass spectrometry analysis has shown
that RIPK1 and RIPK3 have multiple sites for phosphor-
ylation on N-terminal kinase domain. Interestingly, ex-
pression of the truncated form of these proteins lacking
N-terminal kinase domain resulted in the formation of
amyloid fibrils [3]. Phospho-acceptor sites in RIPK1 are
ser89 and ser161. Addition of phosphate group on ser89
inhibits the activity of RIPK1; hence, this site is involved
in regulation of RIPK1 activity during necroptosis.
McQuade et al. [42] have reported that substitution of
serine with glutamate (S89D-RIPK1) resulted in reduced
activity of RIPK1 while in the case of S89A-RIPK1, kin-
ase activity of RIPK1 is increased in contrast to
wild-type RIPK1. Structural analysis of RIPK1 with
B-Raf suggested that Ser161 is necessary for
pro-necrotic activity of RIPK1. Pro-necrotic activity of
RIPK1 has been found to reduce the substitution of
serine with alanine (S161A-RIPK1) [3, 42]. In spite of
this, Ser321 is also important for induction of
RIPK1-mediated necroptosis, [43] and in addition, New-
ton et al. [44] have shown that autophosphorylation of
Ser166 of RIPK1 also mediates the induction of

necroptosis. The two major phosphorylation sites in
RIPK3 are ser204 and ser232. Sequence homology ex-
periments have shown that ser204 in mouse (ser199 in
human) is conserved in different species. Experimental
studies reported that substitution of ser at 204
(S204A-RIPK3) resulted in inhibition of necroptosis
[14, 42]. In spite of this, ser232 plays a key role in the
recruitment of MLKL; phosphomimetic studies have
shown that ser232 did not control kinase activity of
RIPK3 while it disrupts the binding surface for MLKL
[10, 42]. Besides these, ser227 also mediates MLKL
binding to RIPK3; phosphomimetic mutant at ser227
inhibits RIPK3-mediated necroptosis [10, 42]. These
studies suggested that phosphorylation at ser227 allows
permissive conformation in RIPK3 to interact with
MLKL. Although, RIPK1 is an upstream kinase which
activates RIPK3 but RIPK3 and can induce the necrop-
tosis independently of RIPK1. Some studies have also
shown that inducible dimerization of RIPK3 initiates
the MLKL-dependent necroptosis [45–49] and these re-
sults suggested that RIPK1 promotes nucleation events
for RIPK3 oligomerization.

Necroptosis and its role in inflammation
In case of apoptosis, secretion of cytokines is absent or
very less, while during necroptosis, it is a primal event
leading to robust inflammation. However, release of
DAMP from cells is the primary way by which RIPK3

Fig. 1 Molecular mechanism of apoptosis and necroptosis. Death receptor mediates both extrinsic apoptosis as well as necroptosis; RIPK1 plays a key
role in apoptosis and necroptosis. Activation of caspase-8 drives the pathway towards apoptosis while its inhibition leading to necroptosis. During
necroptosis, RIPK1 and RIPK3 interact with each other resulting in the formation of functional heterodimer complex; this complex promotes
oligomerization of MLKL by phosphorylating it. Oligomeric form of MLKL translocates towards the plasma membrane from cytosol resulting in the
formation of the pore, causing an inflammatory response. In spite of pore formation, MLKL also mediates its effect after interacting with ion channels
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stimulates the inflammatory response after insertion of
MLKL. Recent studies have reported that RIPK3 also dir-
ectly activates the formation of inflammasome which is
formed in response to cellular stress or microbial infection
to activate caspase-1 and caspase-11. Further, caspase-1
cleaves IL-1β into mature form [50] and this activation oc-
curs via two distinct RIPK3-dependent pathways: one me-
diated by caspase-8 and the other one mediated by NLPR3
(NOD, LRR, and pyrin) and leads to inflammasome
formation [51]. A number of studies have shown that
RIPK3 facilitates cytokine production and activation of
inflammasome which is mediated by lipopolysaccharide
(LPS) [52–56]. Several studies have reported that MLKL is
essential for RIPK3-dependent inflammation (Fig. 2) while
few studies reported that ablation of MLKL does not affect
the RIPK3-dependent activation of NLPR3, IL-1β matur-
ation, or cytokine production [57–59]. However, it is un-
known how RIPK3 activates NLPR3-mediated formation
of inflammasome with or without the involvement of
MLKL. Some models explain that RIPK3 also acts as scaf-
fold to recruit complex containing RIPK1, FADD, and
caspase-8 [51, 52, 56, 59, 60]. In this condition, caspase-8
promotes the maturation of naive IL-1β by an unknown
mechanism or activates the caspase-1 within NLPR3
inflammasome. However, some studies have shown that
caspase-8 also plays an inhibitory role by preventing
RIPK3-MLKL-mediated assembly of NLPR3 [53].
In spite of RIPK3, RIPK1 also induces cytokine

production independent of RIPK3. In some models,
RIPK1 acts as scaffolds especially during TNF-mediated
NF-κB and JNK activation leading to cytokine produc-
tions [61–63]. Recently, it was shown that RIPK1 is cru-
cial in increasing the level of circulating IL-1α for

activation of NF-κB, FOS, and ERK following TLR4 activa-
tion [64], for secretion of TNF of TNF-treated cells in an
autocrine fashion [65] and also for the induction of
spontaneous inflammatory disease in SHIP (defective SH2
domain-containing inositol 5′-phosphatase 1) defective
mice [66]. The release of DAMPs either from dying cells
or by RIPK1–RIPK3 inflammasome-dependent or RIPK1–
RIPK3 inflammasome-independent pathways varies
depending on the cellular environment.

Necroptosis: infectious and non-infectious diseases
Necroptosis plays a key role in the production of cyto-
kine driven by TNF on pathogen infection. TNF is a
major driver of bacterial infection suggesting that
necroptosis may also appear to be a pro-inflammatory
factor in bacterial infection-induced inflammation.
Escherichia coli-expressed NleB1 protein (pathogenicity
effector protein) inhibits apoptosis and necroptosis by
modifying arginine residue in proteins containing death
domains such as FADD and RIPK1 [67, 68]. NleB1 (patho-
genecity effector protein having N-acetylglucosamine
transferase activity)-deficient bacteria (E. coli) are unable
to colonize in the intestine of the host which suggests that
bacterium-induced cell death protects the host organism.
In addition to this, RIPK3 deficiency in combination with
caspase-8 or FADD leads to increased susceptibility to
Yersinia infection [13, 69]. Several studies have shown that
many bacteria stimulate RIPK3-mediated necroptosis
[70–73]. Consistent with this, RIPK3-dependent necropto-
sis and TNF expression have been observed in tissues
infected with Mycobacterium tuberculosis [72], further
suggesting that necroptosis plays a key role in
bacterial-induced chronic inflammation. Roca and

Fig. 2 RIPK-dependent inflammation. RIPK3 kinase activity, critical for oligomerization of MLKL that culminates with inflammation. Activation of
RIPK3 is mediated by RIPK1 as well as other mediators like TLR3/TLR4 and interferon
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Ramakrishnan [72] also showed that RIPK1/RIPK3 are
both essential to stimulate TNF-dependent generation of
reactive oxygen species (ROS) in tuberculosis infection.
Experimental studies have also shown that upregulation of
RIPK3 and MLKL detected in alcoholic and drug-induced
liver injury suggests that necroptosis is also involved in
sterile inflammation. Application of Necrostatin (Nec)-1
or depletion of RIPK3 protects liver cells from these types
of injuries [74]. Parasitic diseases like leishmaniasis and
malaria generally caused hemolysis, anemia, and some-
times bleeding. These result due to rupturing of red blood
corpuscles (RBCs) leading to release of hemoglobin (Hb)
into circulation; heme is produced on oxidation of Hb
leading to initiation of the Fenton reaction and culminates
with generation of ROS. Heme is also responsible for dir-
ect activation of TLR4, leading to autocrine secretion of
ROS and TNF, and they activate the RIPK1/3-dependent
necroptosis in a synergistic manner [75].
In spite of this, RIPK/MLKL-mediated necroptosis also

plays a key role in destructive inflammation during viral in-
fection. Viruses use the signaling pathways of the host to
potentiate infection such as anti-apoptotic proteins
encoded by viruses which increase its ability to replicate in-
side the host cell. Upton et al. [76] have shown that viral
(mouse cytomegalovirus and M45-encoded viral inhibitor
of RIPK activation) encoding protein containing the RHIM
domain interacts with RIPK1 and RIPK3 and inhibits
virus-induced cell death. Viral inhibitor of RIPK activation
(vRIA) disrupts the binding of RIPK3 with DNA-dependent
activator of IRFs (DAI) which results in suppression of
cytomegalovirus-mediated necroptosis [77] while human
cytomegalovirus-encoded different protein (IE1—immedi-
ate early gene 1) which does not disrupt the binding of
RIPK3 with DAI; it acts by inhibiting signaling downstream
of MLKL [78]. Experimental studies carried out on mice
lacking RIPK3 exhibit impaired virus-induced necroptosis
and increased sensitivity to viral infection [8, 13, 77, 79, 80].
Regulation of necroptosis by viruses appears to be detri-
mental to the host under some circumstances such as in
the case of HIV infection which induces necroptosis in im-
mune cells required for infection control. The rate of
necroptosis was increased in HIV-infected T cells which
were correlated with decreased caspase-8 activity [81] and
higher sensitivity to TNF-mediated cell death [82]. Several
studies have reported the role of necroptosis in multiple tis-
sues in ischemia-reperfusion condition [83–85]. In addition
to this, fewer necrotic areas and less pro-inflammatory
cytokine expression in active necroptosis lesson has been
found in RIPK3-deficient mice; they are also more resistant
to the development of atherosclerosis [86, 87].

Necroptosis and neurodegenerative disease
Necroptosis was characterized initially in ischemic brain.
Several lines of evidences have reported that necroptosis

not only caused pathogenesis of neurodegenerative dis-
eases such as Parkinson’s disease [88], amyotrophic lat-
eral sclerosis [89, 90], and multiple sclerosis (MS) [91]
but is also involved in other neurodegenerative condi-
tions including spinal cord injury [92, 93] and retinal de-
generation [63, 94, 95]. A secondary pathological feature
in the patient of spinal cord injury is chronic inflamma-
tion, astrogliosis, and cavity formation [96]. Some stud-
ies have shown that application of Nec-1 has a
protective effect in spinal cord injury (SCI) [14, 97]. A
recent study has reported that expression of RIPK3 and
phosphorylated MLKL increased in reactive astrocytes
and microglia after SCI [92, 98]. M1 microglia induced
TLR/myeloid differentiation signaling-dependent
necroptosis leading to cell death of reactive astrocytes
which line the spinal cavity [92], and microglia plays a
key role during chronic inflammation post-SCI [98].
Microglial-mediated chronic inflammation further raises
questions how programmed necrosis regulates the
chronic inflammation after SCI. Multiple sclerosis is an
autoimmune disease of the brain characterized by de-
myelination and chronic inflammation. Ofengeim et al.
[91] have reported that TNFα induces the death of oligo-
dendrocytes in a RIPK1/3-dependent manner. Increased
level of TNF-α, IL-1β, and RIPK3 in microglia and neu-
rons in the mouse model mimics the characteristic of
Gaucher’s disease, a metabolic disorder of the brain.
Amyotrophic lateral sclerosis (ALS), a well-known motor
neuron degenerative disease, is characterized by inflam-
mation which is a hallmark of ALS. Re et al. [99] have
shown that motor neuron undergoes necroptosis by
using the spinal cord of the ALS model. Further, these
reports suggested that neuronal cell type-specific
necroptosis occurs in neurodegenerative diseases. Recent
studies have been noted that application of Nec-1 has a
protective effect on dopaminergic neurons after treat-
ment of 6-OHDA to PC12 cells and diminished the ex-
pression of LC3, involved in autophagy. These results
indicated that expression of RIPK1 is high in the
Parkinson disease (PD) model [88].

Necroptosis—therapeutic approach for
neurodegenerative disease
The protective and inflammatory effects of necroptosis
in pathological condition of neurodegenerative diseases
are used to develop effective treatments. In recent
times, there are some inhibitors (or compounds) which
are used to treat the neurodegenerative diseases such
as NEC-1, HDAC inhibitors, and 24(S)-hydroxycholes-
terol. Nec-1 diminished the activity of RIPK1 by inhi-
biting its phosphorylation and translocation resulting
in disruption of downstream necroptosis signaling [3].
In spite of necroptosis, Nec-1 also inhibits apoptosis
and autophagy through activating Akt and mTOR
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signal pathways after traumatic brain injury (TBI)
[100]. Previous studies based on Nec-1 demonstrated
that inhibition of RIPK1 blocked the cell death includ-
ing necroptosis and apoptosis in an animal model of
degenerative diseases. Using Nec-1 with zVAD-fmk
produced promising treatment effects in neurodegen-
erative diseases [2], suggesting that there is great com-
plementarily between necroptosis and apoptosis.
24(S)-Hydroxycholesterol (24S-OHC) plays a key role
in maintaining cholesterol homeostasis in the brain
and considered as a possible biomarker of neurodegen-
erative diseases [101]. Ester form of 24S-OHC inhibits
amyloid-β production at physiological concentration
while at high concentration it induces non-apoptotic
programmed cell death in neuronal cells with low expres-
sion of caspase-8; hence, controlling the level of 24S-OHC
may prevent onset of progressive neurodegenerative dis-
eases [101]. Histone modifications have a great impact on
epigenetic modulation of transcription in cells. Acetylation
and deacetylation are two important modifications in-
volved in regulation of transcription status of cells. Deace-
tylation of histone protein results in chromatin
condensation and transcriptional inhibition in neurode-
generative diseases including Huntington’s disease and PD
[102–104], suggesting that HDAC is closely related with
necroptosis in contrast to apoptosis. Suberoylanilide
hydroxamic acid (SAHA) is a most appropriate necropto-
tic inhibitor which could protect cells from necroptosis
[97] by enhancing the expression of cFLIPL, NF-κB, and
P38 while inactivating the JNK [49].
ALS is a rare progressive neurodegenerative disease

which affects the nerve of the brain and spinal cord
leading to weakening/hardening of muscles on onset
of age, and there is no effective treatment to reverse
the natural course of ALS by far. Ablation in func-
tion of optineurin (OPTN) [64] and superoxide
dismutase-1 (SOD1) [99] resulted in pathogenesis of
ALS. Mutation in OPTN gene actively initiates the
RIPK1-dependent signaling resulting in progressive
axonal degeneration and demyelination in ALS pa-
tients. Interestingly, axonal degeneration and motor
dysfunction have been found to reduce in SOD1
G93A transgenic mice on silencing of RIPK3 or
Nec-1 (7–Cl–O–Nec-1) stimulation [89] and sug-
gested that astrocytes in motor neuron of ALS

patient stimulate necroptosis in RIPK1/MLKL-depen-
dent manner. Degeneration of motor neuron in ALS pa-
tient was found to be dead due to necroptosis in in vitro
model of human adult primary sporadic ALS [99].
Treatment of ALS patient with necrosulfonamide (NSA)
or RIPK1 knockdown resulted in survival of neighboring
motor neuron [89, 99]. In necroptotic astrocytes,
expression of TLR and myeloid differentiation primary re-
sponse gene 88 (MyD88) has been found to be
upregulated during inflammatory responses. Recently, it
was found that activated astrocytes undergo transform-
ation into M1 microglia/macrophages mediated by
TLR/MyD88 signaling cascade [92]. Pirooznia et al.
[105] have shown that human adult astrocytes of famil-
ial and sporadic ALS secreted pro-inflammatory cyto-
kines resulting in the death of neighboring motor
neurons through necroptosis. Further, these studies in-
dicated that necroptosis might be a novel target for the
treatment of ALS. In spite of this, Nec-1 also amelio-
rates another neurodegenerative disease (Table 1).

Conclusion
Necroptosis, a new type of cell death pathway, and its
molecular players contribute to embryonic and postna-
tal development. In spite of all this, they also partici-
pate in tissue homeostasis and in development of
various kinds of pathological conditions. Necroptosis is
an emerging field closely related to apoptosis and tar-
geting RIPK3 and RIPK1 may help to overcome thera-
peutic hurdles in the treatment of inflammatory and
neurodegenerative diseases. The process of inflamma-
tion is a highly complicated process which results due
to coordination of different players of the immune sys-
tem. Necroptosis affects different cell population of
the immune system in a temporal and spatial manner.
Hence, it is necessary to unveil the molecular mechan-
ism through which necroptosis process regulates the
phenotype of immune cells. Further, unrevealing the
immunostimulatory mechanisms from apoptosis to
necroptosis will be helpful to understand necroptosis.
In spite of necroptosis, RIPK3/RIPK1 also mediates
no-necroptosis pathway; hence, carefully dissecting
these pathways will provide better targets for thera-
peutic approaches in the nearby future.

Table 1 Role of Nec-1 in neurodegenerative diseases

S. no. Neurodegenerative disease Role of Nec-1 References

1 Alzheimer’s disease Nec-1 promotes the neural cell death and improves neurobehavior in Al-treated mice model.
Nec-1 also ameliorates cognitive dysfunction, significantly reducing the level of Aβ and tau in
APP/PS1 mice model.

[106, 107]

2 Parkinson’s disease Nec-1 enhanced the cell survival in 6-OHDA-treated PC12 cells [108]

3 Huntington’s disease Nec-1 increased survival rate in ST14 8plx cells [100]
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