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Abstract

Background: The incidence of traumatic brain injuries (TBIs) is on the rise in the USA. Concussions, or mild TBIs
without skull fracture, account for about 75% of all TBIs. Mild TBIs (mTBIs) lead to memory and cognitive deficits,
headaches, intraocular pressure rises, axonal degeneration, neuroinflammation, and an array of cerebrovascular
dysfunctions, including increased vascular permeability and decreased cerebral blood flow. It has been recently
reported that besides vascular dysfunction in the cerebral circulation, mTBI may also cause a significant impairment
of endothelial function in the systemic circulation, at least within mesenteric microvessels. In this study, we
investigated whether mTBI affects endothelial function in aortas and determined the contribution of transient
receptor potential canonical (TRPC) channels to modulating mTBl-associated endothelial dysfunction.

Methods: We used a model of closed-head mTBI in C57BL/6, 129S, 1295-C57BL/6-F2 mice, and 129S-TRPC1 and
129S-C57BL/6-TRPC6 knockout mice to determine the effect of mTBI on endothelial function in mouse aortas
employing ex vivo isometric tension measurements. Aortic tissue was also analyzed using immunofluorescence and
gRT-PCR for TRPC6 expression following mTBI.

Results: We show that in various strains of mice, mTBI induces a pronounced and long-lasting endothelial
dysfunction in the aorta. Ablation of TRPC6 protects mice from mTBl-associated aortic endothelial dysfunction,
while TRPC1 ablation does not impact brain injury-induced endothelial impairment in the aorta. Consistent with a
role of TRPC6 activation following mTBI, we observed improved endothelial function in wild type control mice
subjected to mTBI following 7-day in vivo treatment with larixyl acetate, an inhibitor of TRPC6 channels. Conversely,
in vitro treatment with the pro-inflammatory endotoxin lipopolysaccharide, which activates endothelial TRPC6 in a
Toll-like receptor type 4 (TLR4)-dependent manner, worsened aortic endothelial dysfunction in wild type mice.
Lipopolysaccharide treatment in vitro failed to elicit endothelial dysfunction in TRPC6 knockout mice. No change in
endothelial TRPC6 expression was observed 7 days following TBI.

Conclusions: These data suggest that TRPC6 activation may be critical for inducing endothelial dysfunction

following closed-head mTBI and that pharmacological inhibition of the channel may be a feasible therapeutic
strategy for preventing mTBIl-associated systemic endothelial dysfunction.
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Background

Traumatic brain injuries (TBIs) are a major public health
concern as they are a common cause of death and dis-
ability, both in the USA and worldwide. The incidence
of TBIs is increasing in the USA [1, 2]. TBIs can occur
after any sort of blow or injury to the head, which can
happen in many different situations, including vehicle
collisions, exercise- and sports-related injuries, military
involvement, and violence. Virtually all individuals re-
gardless of geographical location, socioeconomic status,
occupation, or age are at risk of suffering a TBI in their
lifetime. Worldwide TBI incidence is estimated to be ap-
proximately 69 million individuals per year [3].

TBIs can range from mild (Glasgow Coma Score 13—
15, unsustained loss of consciousness, amnesia immedi-
ately before or after the incident, alterations in mental
state at the time of the incidence, headache, or any focal
neurological deficits following the incident) to severe
(Glasgow Coma Score 3-8, coma, severe memory loss,
permanent and disabling motor deficits) [4]. Mild TBIs
(mTBI) are caused by non-penetrating physical impacts
without skull fracture. Up to 80% of all TBIs are catego-
rized as mTBIs, which less frequently involved hospital
stays and follow-up [1]. Reports of mTBI are more
prevalent in young children less than the age of 4, males
between ages 15-24, and the elderly, particularly females
over the age of 65 [1, 2]. There is also a growing body of
evidence indicating that repetitive mTBIs can lead to per-
manent dysfunction, including increased risk of neurode-
generative disorders (amyotrophic lateral sclerosis, chronic
traumatic encephalopathy, Parkinson’s, and Alzheimer’s dis-
eases) [5-7] and cardiovascular complications [8—16].

TBI is a pro-inflammatory condition affecting predomin-
antly the brain, but it also known to cause impairments in
other organs, such as the eye, lungs, and mesenteric arteries
[17, 18]. During closed-head mTB], sterile immune reaction
at the site of injury involves both the resident microglia and
peripherally derived inflammatory cells that are recruited to
the brain [19]. The inflammatory reaction is important for
clearing damaged cells and repair processes in the brain
[19]; however, excessive activation of innate immunity pro-
duces a storm of cytokines that may leak through the im-
paired blood-brain barrier to the cerebral and systemic
circulations and initiate collateral damage.

Cerebrovascular dysfunction has long been associated
with TBI. In addition, there is evidence indicating that
TBIs also likely have significant effects on the systemic
vasculature [11]. A recent study found that open-head
TBI causes significant microvascular endothelial dys-
function in the mesenteric bed, lasting at least 24h
post-injury [18]. Endothelial dysfunction is an estab-
lished risk factor for cardiovascular disease [20—-22], spe-
cifically associated with essential hypertension [23],
cerebral ischemia [24], and may precipitate vasospasm.
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Transient receptor potential canonical (TRPC) proteins
are a family of proteins implicated in modulating smooth
muscle and endothelial function [25-27]. TRPC proteins
form receptor- and store-operated Ca** permeable, non-
specific cation channels in the plasma membrane. The
seven members in the TRPC subfamily (TRPC1-TRPC?)
can be stimulated via G-protein-coupled receptors, such
as the histamine H1 receptor, the muscarinic M1 receptor,
or the al adrenoceptor [25, 26, 28-30]. In mouse endo-
thelial cells, the TRPC6 channel can be activated by bac-
terial lipopolysaccharides (LPS) in a Toll-like receptor type
4 (TLR4)-dependent manner [27].

In this study, we investigated the long-term effects of
mTBI on the systemic vasculature. We used a mouse
closed-head mTBI model to determine whether mTBI
leads to endothelial dysfunction in the aorta utilizing
isometric tension measurements and determined the
role of the TRPC1 and TRPC6 channels in the patho-
genesis of mTBI-induced aortic endothelial dysfunction
using commercially available TRPC1 and TRPC6 knock-
out mouse strains.

Methods

Animals

C57BL/6, 129S, 129S-C57BL/6-F2, 129S-TRPC1-KO (Stock
# 37347-JAX), and 129S-C57BL/6-TRPC6-KO (Stock #
37345-JAX) mouse strains were purchased from The Jack-
son Laboratory and/or were bred in house. Both male and
female mice were used. All animal procedures were per-
formed in accordance to the NIH guide and were approved
by the Indiana University IACUC. The mice were eutha-
nized under isoflurane anesthesia by decapitations.

Closed-head mild traumatic brain injury

Mice were subjected either to a single closed-head TBI
using a computer-controlled cortical electromagnetic
impactor (Stereotaxic Impactor, Leica Biosystems Inc.
Buffalo Grove, IL) or to sham injury as described else-
where [17, 31]. Briefly, mice were anesthetized by inhal-
ation of 4% isoflurane for induction and 2% isoflurane
for maintenance. In addition, a lidocaine (2 mg/kg) and
bupivacaine (1 mg/kg) mixture was given locally prior to
incision for analgesia. The anesthetized mice were placed
in a stereotaxic frame (Kopf Instruments). The top of
the head was shaved and a mid-line incision was made
from bregma to lambda on the top of the head exposing
the skull. An impacting piston with a tip diameter of 3
mm was angled in a way to ensure that its axis was per-
pendicular to the exposed left parietemporal skull sur-
face. Sham control animals were exposed to anesthesia,
subjected to skin incision and skull exposure but was
not subjected to the cortical impact. After injury, the in-
cision was sutured and mice were allowed to recover
from anesthesia. To confirm the severity of the cortical
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bone impact and absence of bone fracture, we measured
intraocular pressure (IOP) changes in the mouse eye
with the Icare TONOLAB (Vantaa, Finland) immediately
before and after the injury for up to 30 min (Fig. 1, n =28
mice in each group). Changes in IOP served as a surrogate
of changes in brain pressure after the injury event. If the
skull bone was fractured, there would be no IOP. In a sub-
set of experiments, these TBI procedures were followed by
administration of larixyl acetate (TRPC6 inhibitor) or
TAK-252 (TLR4 inhibitor) dissolved in 0.1% DMSO and
brought to 1ml total volume. Drug solution or vehicle
were intraperitoneally injected (larixyl acetate, 5 mg/kg; or
TAK-242, 10mg/kg under isoflurane anesthesia) within
first 2 h after TBI induction and then on a daily basis for
7 days. In these in vivo experiments, the 7-day post-injury
time point has been chosen because a typical hospital stay
of a TBI human subject is 7 days (https://www.hcup-u-
s.ahrq.gov/reports/statbriefs/sb27.pdf).

Assessment of endothelial-dependent vasodilation

Mice were euthanized by decapitations under isoflurane
anesthesia. Mouse aortas were isolated and cleaned from the
fat and connective tissue in a calcium and magnesium-free
phosphate buffer solution (PBS, Lonza). A wire myograph
from GlobalTown Microtech., Inc. (Sarasota, FL) was used
to monitor the force generated by aortic arch rings. The iso-
metric tension measurements were performed as described
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elsewhere [32-35]. Briefly, aortic arches were hung on the
wires of the wire myograph and were placed into the 5-ml
tissue baths filled with the standard Krebs buffer maintained
at 37°C and continuously oxygenated by bubbling a gas
mixture of 95% O, and 5% CO, during all of the performed
experiments. The preload in all experiments was set to 0.7—
1g. Increasing concentrations of phenylephrine and then
acetylcholine was added directly into the tissue baths while
the contraction force was measured. SNAP (S-Nitroso-N-a-
cetyl-DL-penicillamine, a nitric oxide donor) was used to as-
sess the maximal receptor-independent aortic ring dilations.
The analog ring tension data were digitized with a frequency
of 20 Hz and recorded on a computer’s hard drive.

Immunofluorescence staining

Mouse aortas were prepared as described above. Isolated
mouse aortas were fixed in 4% paraformaldehyde for 2h
on ice. Tissue was then washed in phosphate buffered
saline, and frozen in Tissue-Tek O.C.T Compound
(Sakura Finete) using a mixture of dry ice and isopen-
tane. After cryosections (~ 8 um) were obtained, O.C.T.
was removed from tissue samples by a 5-10 min wash in
Tris buffered saline (TBS). Samples were permeabilized
in 0.2% Triton X-100 in TBS for 5min and were then
washed three times in TBS. After blocking in 5% horse
serum in TBS at room temperature for 1h, sections
were incubated at 37° with the TRPC6 antibody (1:100,
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Fig. 1 Time course of intraocular pressure (IOP) changes induced by mild TBI. The first reading (Pre-Op) was taken just before the surgery and then 10,
20, and 30 min after inflicting a TBI. None of the mice used for the experiments exhibited evidence of bone fracture. *** stands for p < 0.001
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Alomone lab, ACC-017) and an anti-smooth muscle
actin antibody conjugated to Cy3 (1:250; C1698, Sigma).
Sections without the TRPC6 primary antibody served as
a negative control. TRPC6 immunoreactivity was de-
tected with anti-rabbit Alexa Fluor 647 (1:4000; Jackson
ImmunoResearch). Stained samples were mounted in
ProLong Gold with DAPI (Invitrogen) and visualized by
confocal microscopy (Olympus Fluoview FV1000).

qRT-PCR

Total mRNA was isolated from freshly collected mouse
aortas using the PureLink mRNA isolation kit (Thermo
Fisher Scientific). Five hundred nanograms of RNA was
used in reverse transcription reactions (High-Capacity
RT-cDNA Kit, Life Technologies). Real-time PCR was
performed using Syber Green (Roche). Levels of mRNA
expression were normalized to expression of Hprt as an
internal control and are expressed relative to the mean
values seen in samples from sham control mice. Primers
used for PCR were TRPC1 Forward: TCC CAA AGA
GCA GAA GGA CTG, TRPC1 Reverse: CAA AGC
AGG TGC CAA TGA A; mTRPC6, RT® qPCR assay
(PPMO04056A, Qiagen).

Drugs and solutions

All drugs were purchased from Sigma-Aldrich or Cay-
man Biochemical. The solution composition was as
follows. The standard Krebs buffer contained (in mil-
limolar) 130 NaCl, 5 KCI, 2 CaCl,, 1.2 NaH,PO,,
0.56 MgCl,, 25 NaHCOs;, and 5 glucose. The 70 KCl
solution contained (in millimolar) 65 NaCl, 70 KCI, 2
CaCl,, 1.2 NaH,PO,, 0.56 MgCl,, 25 NaHCO3, and 5
glucose.

Statistical analysis

Sigma plot 12 was used to analyze the aortic ring
tension data. Two-way ANOVA followed by a
Student-Newman-Keuls post hoc pairwise multiple
comparison test was used to compare the tested ex-
perimental groups affected by two different factors
when the data sets were normally distributed popula-
tions with equal variances. The t test was used to
compare two tested groups. The data sets were con-
sidered significantly different if the p value was less
than 0.05. All data were presented as mean + standard
error (S.E.).

Results

Aortas from TBI mice exhibit a pronounced endothelial
dysfunction

A major function of the endothelium is to release vasodila-
tory molecules, such as nitric oxide (NO), which regulates
vascular tone. Dysfunction of the endothelium disrupting
this regulation increases the risk for developing vascular
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diseases. It was reported recently that open-head TBIs
may cause systemic microvascular endothelial dysfunc-
tion, as demonstrated in mesenteric vasculature, at 24 h
post-injury. We set out to establish whether closed-head
mild TBI causes endothelial dysfunction in the conduit
systemic circulation and whether it lasts beyond 24h
post-injury. We first performed isometric tension record-
ings on rings from aortic arch of C57BL/6 mice subjected
to the closed-head mild TBI or sham surgery procedures.
Figure 2a shows that mild TBI did not affect the ampli-
tude of maximal KCl-mediated contractions of the aortic
arch rings from C57BL/6 mice, but it did increase the
amplitude of phenylephrine-induced contractions of the
TBI rings compared to sham rings (10 pM phenylephrine-
induced active tension normalized to the peak amplitude
of 70 mM KCl-stimulated contraction: 1.18 + 0.14 versus
1.75+0.12 for sham and TBI, respectively, Fig. 2b) and
shift the ECs value for phenylephrine to the left in TBI
aortas (ECsp=141.5+51.7 nM versus 35.8 +21.9nM for
sham and TBI aortas, respectively, Fig. 2b), indicating that
the TBI aortas were more sensitive to phenylephrine. We
assessed endothelial function by examining the ability of
acetylcholine to induce relaxation of aortic rings precon-
tracted with phenylephrine. Compared to sham rings, the
TBI rings exhibited significantly reduced acetylcholine-in-
duced dilations (10 uM acetylcholine-induced dilations:
73.3+8.5%, n=3 versus 39.6 +5.3%, n=3 for sham and
TBI, respectively, Fig. 2c). We next investigated whether
TBI-induced changes in vascular reactivity and endothelial
function would persist for a longer period of time. We
found that 7 days after TBI, 10 uM phenylephrine-induced
active tension normalized to the peak amplitude of 70
mM KCl-induced contraction was still greater in TBI than
sham mice (1.6 + 0.11 versus 1.3 + 0.13 for TBI and sham,
respectively, Fig. 2b), though the amplitude of maximal
KCl-mediated contractions of the aortic arch rings did not
change (0.27 £0.06g versus 0.25+0.07 g for sham and
TBI, Fig. 2d). The ECs, value for phenylephrine was still
shifted to the left in TBI aortas (ECs,=90+13nM and
159 + 43 nM for sham and TBI aortas, respectively, Fig. 2e).
Remarkably, the ability of acetylcholine to induce relaxation
of aortic rings precontracted with phenylephrine was still
impaired 7 days post-injury (Fig. 2f). Compared to sham
rings, the TBI rings exhibited significantly reduced dilations
to 10 pM acetylcholine (87.6 £ 1.9%, n=>5 and 53.1 £ 5.4%,
n =8 for sham and TBI, respectively, Fig. 2f). However, we
found no difference between the TBI and sham groups 21
days post-injury (Fig. 2g, h, and i).

To establish the generality of our findings, we also
assessed the effect of TBI on the systemic vasculature in
mice of two other genetic backgrounds. The amplitude
of maximal KCl-induced contractions were similar in
both sham and TBI mice on the 129S (0.55 + 0.06 g ver-
sus 0.45+0.07g, n=9, Fig. 3a) and 129S-C57BL/6-F2
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Fig. 2 Effect of TBI on reactivity and endothelial function in mouse aortic arches from C57BL/6. a, d, and g Bar graphs comparing the active tensions in
(C57BL/6 aortic arch rings, respectively, in the presence of 70 mM KCl in sham and TBI mice after 1, 7, and 21 days. b, e, and h Concentration-response
relationships for phenylephrine (PE)-induced contractions in aortic arch rings from sham and TBI C57BL/6 mice after 1, 7, and 21 days. ¢, f, and i
Concentration-response relationships for acetylcholine-induced dilation in phenylephrine-precontracted rings from sham and TBI C57BL/6 mice. The insets
show the sample traces of active tension changes in aortas from sham (black lines) and TBI (red lines) mice. PE - phenylephrine, ACh - acetylcholine

(0.58 £ 0.05 g versus 0.78 + 0.15 g, n = 5, Fig. 3d). The ob-
served increased sensitivity to phenylephrine in the
C57BL/6 mice following TBI was not seen in the 129S
strain (ECsy of 166.1 + 22.9 nM following TBI compared
to ECsy of 1223+33.1nM in sham mice) or in
129S-C57BL/6-F2 mice (ECsy of 94.8+15.2nM following
TBI compared to ECsq of 107.6+11nM in sham mice)
(Fig. 3b and e). However, aortic rings from both 129S and
129S-C57BL/6-F2 mice showed pronounced endothelial
dysfunction as evidenced by impaired acetylcholine-induced
relaxation of phenylephrine-precontracted rings (10 uM

acetylcholine-induced dilations: 129S sham 58.0 + 4.0%
versus TBI 32.3 +6.8%, Fig. 3c, and 129S-C57BL/6-F2
sham 89.2+25% versus TBI 584 +5.8%, Fig. 3f).
Although TBI impaired acetylcholine-induced aortic
relaxation in each of the strains of mice, we noted that
the average acetylcholine-induced dilation was less pro-
nounced in sham 129S aortic arch rings (10 pM acetyl-
choline-induced dilation: 58.0 + 4.0%) compared to that
observed in sham aortic arch rings isolated from
C57BL/6 mice (10 pM acetylcholine-induced dilation:
89.2 £ 2.5%).
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Fig. 3 129S and 1295-C57BL/6-F2 mice exhibit similar TBl-associated aortic endothelial dysfunction as the one observed in C57BL/6 mice. a, d
Summary data for the active tensions measured in the presence of 70 mM KCl in aortic arch rings from sham or TBI mice. b, e Concentration-response
relationships for phenylephrine-induced contractions in aortic arch rings from sham and TBI mice. ¢, f Concentration-response relationships for
acetylcholine-induced dilations in phenylephrine-precontracted rings from sham and TBI 129S-TRPC1 knockout mice. The insets in b, ¢, e, and f show
the sample traces of active tension changes in aortas from sham (black lines) and TBI (red lines) mice. PE - phenylephrine, ACh - acetylcholine

TRPC1 genetic ablation does not affect TBl-associated
endothelial dysfunction

TRPC1 and TRPC6 channels are implicated in modulating
endothelial function [27]. Therefore, we next assessed
whether genetic ablation of either of these channels would
affect the TBI-associated endothelial dysfunction. We
found that aortic arches from TRPC1 knockout mice (on
a 129S background) exhibited the same TBI-mediated
endothelial dysfunction as the 129S control mice (10 uM
acetylcholine-induced dilation of 56.1+4.1% in sham
129S-TRPC1 KO versus 27.9 +7.4% in TBI-129S-TRPC1
knockout mice compared to 58.0 +4.0% in sham versus
323+6.8% in TBI in 129S control mice; Fig. 4c and
Fig. 3c). The average amplitudes of 70 mM KCl-induced
contractions in the same sham and TBI aortic rings were
not different (0.55 + 0.06 g, n =9 versus 043 £ 0.07g, n=9
for TBI and sham, respectively, Fig. 4a).

TRPC6 genetic ablation prevents TBl-associated
endothelial dysfunction

We next assessed vascular reactivity and endothelial func-
tion in the aortic arch of TRPC6 knockout mice on a mixed
129S-C57BL/6-F2 background subjected to TBI or sham

procedure. The amplitude of maximal KCl-induced con-
tractions in the TRPC6 mice was not different from that
seen in the control 129S-C57BL/6-F2 mice following TBI
or in sham mice (Fig. 5a). Phenylephrine-induced contrac-
tions had similar ECsy values in sham and TBI aortas
(ECs0: 288.6 + 64.2 nM, 1 =8 versus 218.8 +45.8 nM, n =8,
Fig. 5b). Remarkably, we observed that aortic rings from
TBI TRPC6 knockout mice exhibited endothelial function
that was indistinguishable from that observed in sham
TRPC6 knockout animals (10 pM acetylcholine-induced
dilation: 83.6 + 3.0% versus 85.3 + 3.6%, respectively, Fig. 5¢).
These data show that loss of TRPC6 protects mice from
TBI-induced endothelial dysfunction.

TRPC6 activation is critical for mediating TBl-associated
endothelial dysfunction

Since TRPC6 knockout mice exhibited no TBI-associated
endothelial dysfunction, we next tested whether pharma-
cological inhibition of the channel would show any thera-
peutic potential. Larixyl acetate has been identified as a
potent and relatively selective inhibitor of TRPC6 [36].
Therefore, we next tested whether larixyl-mediated inhib-
ition of TRPC6 activity in vivo would be efficacious at
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Fig. 4 1295-TRPC1 knockout mice exhibit similar TBl-associated aortic endothelial dysfunction as the one observed in the control wild type 129S mice. a
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reducing TBl-associated endothelial dysfunction in
129S-C57BL/6-F2 and C57BL/6 mice subjected to TBI and
treated with larixyl acetate. During these experiments, we
assessed the effects of larixyl acetate treatment on aortic re-
activity (in the presence of 70 mM KCl and 10 pM phenyl-
ephrine) and endothelial function 7 days after closed-head
TBI with half of the mice receiving either DMSO vehicle
control or larixyl acetate. Larixyl acetate or DMSO was
given to the mice by intraperitoneal injection immediately
after inflicting TBI and then on a daily basis for 7 days. Lar-
yxil acetate treatment did not affect aortic ring sensitivity to
70 mM KCl-induced depolarization in C57BL/6 mice, but
significantly decreased it in 129S-C57BL/6-F2 mice (Fig. 6a
and d). Conversely, phenylephrine-induced contractions
were significantly decreased in larixyl-treated C57BL/6 mice
(Fig. 6e), but it was unaffected in 129S-C57BL/6-F2 mice.
Importantly, we found that larixyl acetate treatment was

very effective in significantly reducing TBI-associated endo-
thelial dysfunction in both female and male mice (Fig. 6). 10
UM  acetylcholine-induced dilations were 58.4 +5.8% for
DMSO versus 89.2 +2.5% for larixyl in 129S-C57BL/6-F2
females (1 =4 for DMSO and n=>5 for larixyl) or 78.6 +
1.8% for DMSO versus 96.9 + 1.6% for larixyl in C57BL/6
males (n=9 for each group) subjected to either DMSO or
larixyl 7-day treatment after TBL These data strongly sup-
port the hypothesis that TRPC6 activation may underlie the
deleterious effect of TBI on endothelial function.

To further support this hypothesis, we compared
endothelial function in 129S-C57BL/6-F2 aortic arch
rings in vitro treated with LPS for 1 h. LPS is known to
activate TRPC6 in a TLR4-dependent manner in endo-
thelial cells. To quantify the effects of LPS on endothe-
lial function in the rings, we determined the amplitudes
of S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced

A B 15 C

20.6 TRPC6-KO ’ TRPC6-KO TRPC6-KO

s ¢h Sham o1

g T 2

- 1.0 1

204 I S ;j’L SNAP < 20

-2 c o o =

® ke TBI S 401

3 g °

[9) °

So2 5 0.5 3 60

2 2

S < 801

~ :

10 min
©0.0 0.0 1001 - . :
Sham TBI 10 100 1000 10000 1 10 100 1000 10000
PE, nM ACh, nM
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dilations in phenylephrine-precontracted aortic rings
treated with 10 uM acetylcholine (Fig. 7a and b). SNAP
is an NO donor and causes full dilation of the ring due
to a direct action of free NO on aortic smooth muscles,
while bypassing the endothelium. SNAP treatment pro-
vides a measure of total smooth muscle ability to dilate
in the presence of NO. We found that before LPS treat-
ment SNAP effects were small in acetylcholine-dilated,
phenylephrine-precontracted aortic rings (0.09 + 0.02
g), whereas SNAP-induced dilation was significantly
greater after LPS treatment in the same rings (0.25 +
0.04 g; n=7). Interestingly, LPS treatment did not alter
endothelial function in aortic arch rings from 129S-
C57BL/6 TRPC6 knockout mice, again implicating
TRPC6 activation in mediating aortic endothelial
dysfunction (Fig. 7c and d, SNAP effects: 0.09+0.03 g
before LPS treatment versus 0.09 £0.02g after LPS
treatment; n = 8).

TLR4 activation is also essential for mediating TBI-
associated endothelial dysfunction

Tonic TRPC6 activation in the endothelium is TLR4
dependent. Therefore, we next set out to determine whether
TLR4 signaling contributes to mediating TBI-associated
endothelial dysfunction by performing in vivo treatment
with TAK-242, a specific inhibitor of TLR4. We found that
the average amplitudes of 70 mM KCI contractions in the
aortic rings from mice treated with TAK-242 or the vehicle
were not different in the tested groups (0.28 £+0.03g, n=9
versus 0.31+0.04g, n=9 for TBI-DMSO and TBI-
TAK-242 groups, respectively, Fig. 8a). The average
10 puM phenylephrine-induced contractions (normal-
ized to the peak amplitudes of 70 mM KCl-induced
contractions) exhibited similar amplitudes in those two
groups (1.31+0.14, n=7 versus 1.21+0.11, n=7 for
TBI-DMSO and TBI-TAK-242 groups, respectively,
Fig. 8b). Notably, endothelial function was significantly
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improved in the TBI-TAK-242 group compared to the
TBI-DMSO group (782+2.7%, n=9 versus 95.6
05%, n=9 for DMSO and TAK-242, respectively,
Fig. 8¢c), supporting the hypothesis that activation of the
TBI-TLR4-TRPC6 signaling cascade may be involved in
mediating TBI-associated aortic endothelial dysfunction
in TBI mice.

TBI does not affect TRPC6 expression in the endothelial
layer of the aortic arch

We next examined whether TBI affects TRPC6 expres-
sion in the aortic vascular wall using immunofluores-
cence staining. We found that TRPC6 expression was
unaltered in the endothelial layer after TBI (Fig. 9a,
sham 1.0+ 0.12 versus TBI 0.95+0.14, n=3). No pri-
mary antibody control was used to confirm the specifi-
city of the TRPC6 antibody. Notably, in both TBI and
sham aortic arches, expression of TRPC6 was signifi-
cantly lower in smooth muscle cell layer as compared to
the endothelium (p <0.01; Fig. 9b, sham 1.0+ 0.12 for
the endothelium versus 0.52 + 0.06 for smooth muscles;
TBI 0.95+0.14 for the endothelium versus 0.59 +0.09
for smooth muscles). Similarly, we failed to detect any
change in TRPC6 mRNA expression in the aorta follow-
ing TBI (Fig. 9¢).

Discussion

The growing incidence of TBIs, in addition to increasing
evidence of long-term and systemic sequalae, highlights
the importance of developing new approaches and treat-
ment paradigms. In this study, we demonstrated that

closed-head mild TBI causes long-lasting systemic endo-
thelial dysfunction, which is resolved between 7 and 21
day post-injury, in mice. We found that TRPC6 activa-
tion may underlie the development of this systemic
endothelial dysfunction after TBI. Furthermore, we
established that larixyl acetate, an inhibitor of TRPCS, is
effective in preventing TBI-associated systemic endothe-
lial dysfunction when it was administered intraperitone-
ally for 7 days following TBL

Our finding that closed-head mild TBI-induced aortic
endothelial dysfunction in mice of three different genetic
backgrounds (C57BL/6, 129S, and 129S-C57BL/6-F2) in-
dicates that this is not a limited phenomenon and is
consistent with a recent study demonstrating that severe
open-head TBI may cause microvascular endothelial
dysfunction in the mesenteric bed [18]. In this previous
study, it was proposed that vessels of the systemic circu-
lation may have a “molecular memory” of neurotrauma
that may continue for 24h. We have extended these
studies and shown that a mild closed-head TBI also
causes endothelial dysfunction of systemic conduit ves-
sels, such as the aorta and we provide evidence that the
TBl-associated systemic vascular dysfunction lasts at
least 7 days post-injury.

The open-head TBl-associated endothelial dysfunction
in mesenteric arteries previously reported, was suggested
to occur due to upregulation of arginase, a Mn**-contain-
ing metalloenzyme that converts L-arginine to urea and
ornithine [37, 38]. As L-arginine is the substrate for endo-
thelial NO synthase (eNOS), arginase-induced degradation
of L-arginine limits eNOS-dependent NO production and
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subsequent vasodilation. In our studies in the aorta fol-
lowing mild closed-head TBI, we found that TRPC6 gen-
etic ablation prevents TBl-associated aortic endothelial
dysfunction. As TRPC6 is a Ca®>* permeable channel, and
intracellular Ca** rises may rapidly increase arginase ex-
pression [39], it is possible that TRPC6 is an upstream
element that contributes to increasing arginase expression.
However, we cannot rule out that different molecular
mechanisms may underlie endothelial dysfunction in the
aorta and mesenteric arteries. Future experiments will be
required to determine whether there is a difference be-
tween the aortic and mesenteric beds in regard to arginase
expression and activity.

During mild TBI, blood-brain barrier disruption allows
the release of a plethora of pro-inflammatory and
damage-associated molecules into the systemic circulation
[40]. Increased levels of chemokine CCL2; TNF-o; and in-
terleukins (IL-) 6, 8, and 10 have previously been found in
blood serum several days after severe TBI [41, 42]. How-
ever, it remains unclear which molecule, or factor, triggers
TRPC6 activity after mild TBI in our mouse model. Not-
ably, we did not observe any increase of TRPC6 expres-
sion levels in the aortic wall after TBI indicating that
changes in TRPC6 activity rather than expression may be
mediating aortic endothelial dysfunction. Consistent with
this, we found that activation of TLR4 signaling via LPS
caused pronounced aortic endothelial dysfunction without
TBI, in a TRPC6-dependent manner. We propose that
a TLR4 agonist may be present in the systemic circu-
lation after TBI that triggers TRPC6 activity. This hy-
pothesis is supported by a previous report that TLR4
genetic ablation reduces tissues injury events associated
with brain trauma [43] and by our data indicating that

7-day treatment with TAK-242, a specific inhibitor of
TLR4, significantly improved endothelial function in TBI
mice (Fig. 8).

A recent study demonstrated that TBI is also associated
with significant cardiac dysfunction identified by decreased
left ventricular ejection fraction and fractional shortening,
which was observed up to 30 days post-TBI [44]. The au-
thors established that splenectomy significantly decreased
cardiac dysfunction, but not neurological or cognitive func-
tion, after TBI. Thus, it appears that the TBI-induced neu-
roinflammation may trigger systemic inflammation and
immune cell infiltration in the cardiac tissue, further impli-
cating systemic immune response as a factor underlying
TBI-mediated cardiovascular dysfunction.

In this study, we found that the genetic ablation of
TRPC1 in mice does not protect from TBI-associated vas-
cular dysfunction. These data are consistent with the obser-
vation by Peters et al. [45] that TRPC1-/— mice exhibited
similar neurological deficits as wild type mice up to 21 days
after closed-head mild TBI Interestingly, Peters et al. [45]
found that carvacrol, 5-isopropyl-2-methylphenol, isolated
from the essential oil of Origanum vulgare, was effective in
improving neurological severity score in TRPC1—-/- mice
but not in wild type mice, implicating TRPC1 elimination
as a sensitizer for the carvacrol beneficial effect after TBI.
However, Peters et al. [45] did not investigate the effect of
closed-head TBI on the vasculature.

Importantly, we found that pharmacological inhibition
of TRPC6 with larixyl acetate was effective at preventing
TBI-induced systemic vascular dysfunction (Fig. 4). Lar-
ixyl acetate-dependent inhibition of TRPC6 was first de-
scribed in the elegant paper by Dr. Michael Schaefer’s
research team [36]. Urban et al. [36] demonstrated that
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the compound’s apparent ICso value was approximately
0.65 uM for TRPC6, which is 10-100x lower than that
for other members of the TRPC channel subfamily. Im-
portantly, the authors showed that larixyl acetate’s cyto-
toxicity was very low and that the compound did not
lose its bioactivity even after a 24-h incubation in
citrate-supplemented human whole blood at 37°C.
Together, these data suggest that larixyl acetate treat-
ment may be an effective therapeutic strategy for lim-
iting the damaging effects on TBI on the systemic
vasculature.

Conclusions

We show for the first time that TRPC6 genetic ablation
or pharmacological inhibition with larixyl acetate pre-
vents TBI-associated systemic endothelial dysfunction in
mice. These findings identify TRPC6 as a promising tar-
get for developing new therapeutic drugs to treat endo-
thelial dysfunction after TBL
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