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Urolithin A attenuates memory impairment
and neuroinflammation in APP/PS1 mice
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Abstract

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal
accumulation of amyloid-B (AB) plagues, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-
microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is
unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PSTAE9
(APP/PS1) mouse model of AD.

Methods: Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the
response of glia, AR deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-

APP degradation.

promising therapeutic drug to treat AD.

linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (gRT-PCR). The modulating
effects of UA on cell signaling pathways were assayed by Western blotting.

Results: We demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced
neurogenesis in APP/PS1 mice. Furthermore, UA attenuated AP deposition and peri-plague microgliosis and astrocytosis
in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing
cerebral AMPK activation, decreasing the activation of P65NF-kB and P38MAPK, and suppressing Bacel and

Conclusions: Our results indicated that UA imparted cognitive protection by protecting neurons from death
and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a
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Introduction

Alzheimer’s disease (AD) is a multifaceted neurodegen-
erative disorder that causes cognitive deterioration and
has no effective cure. The histopathological hallmarks of
AD are the increase in neuronal amyloid-p (AP) plaque
formation, hyperphosphorylated tau protein, neuroin-
flammation, and neuronal loss [1]. A accumulation has
been shown to recruit activated glia [2]. Indeed, reactive
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gliosis is increasingly regarded as an important player in
the neuropathological processes of AD. Activated micro-
glia and astrocytes have been reported to produce a wide
range of proinflammatory factors such as IL-1f and
IL-6, which increased amyloid precursor protein (APP)
expression and A deposition in models of AD [3, 4].
Conversely, activated glia also promoted the phagocyt-
osis of the AP oligomer [5]. These findings show that
activated glia have dual and opposing roles with re-
spect to neuroinflammation in AP pathology. Numer-
ous epidemiological reports supported the finding that
anti-inflammatory therapy can reduce the risk for AD
by more than 50% [6, 7]. Thus, anti-inflammatory
therapy has been proposed as a potential therapeutic
strategy for AD.
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Ellagic acid (EA) is a hydrolyzed form of ellagitannins
(ETs), which are abundant in pomegranate, berries, and
nuts. Complex dietary EA and ETs are poorly absorbed
in humans, but they get further metabolized by gut
microflora to yield a series of urolithins [8]. Among the
urolithin species, urolithin A (UA) is the major metabol-
ite observed in humans [9]. Several studies have demon-
strated that UA had anti-inflammatory and antioxidant
properties in vitro and in vivo [10-14]. However, it is
unknown whether UA improves cognitive function and
attenuates neuroinflammation in the APPswe/PS1AE9
(APP/PS1) transgenic mouse model of AD. Therefore,
the aim of this study was to determine if UA can res-
cue cognitive impairment in APP/PS1 mice and to
elucidate the underlying cellular and molecular mech-
anisms of its effects.

Methods and materials

Animals and drug treatment

Female APP/PS1 transgenic mice were purchased from
The Jackson Laboratory (Strain name: B6C3-Tg (APPswe,
PS1dE9) 85Dbo/J; No. 004462). Age- and gender-matched
wild-type (WT) littermates were used as controls. The
mice were allowed to adapt to the laboratory environment
before testing. The experiments were carried out in com-
pliance with The Guidelines for Animal Care and Use of
China, and the experimental protocols were approved by
the animal ethics committee of Guangzhou Medical
University.

Mice (28 weeks old) were orally administered 300 mg/
kg UA (Standard, China) dissolved in 0.5% carboxymeth-
ylcellulose at the same time each day for 14 days.
Control mice (APP/PS1 transgenic mice and wild-type
mice) were orally administered the same quantity of
0.5% carboxymethylcellulose (vehicle).

Morris water maze

After UA treatment, the spatial learning and memory of
mice were assessed by the Morris water maze. Briefly,
the maze consisted of a stainless steel pool (120 cm in
diameter and 50 cm in height) with a submerged
escape-platform (10 cm in diameter) placed 1 cm below
the water surface. The water temperature was main-
tained at 24 + 1 °C. The spatial learning task consisted of
four consecutive days of testing with four trials per day.
In each trial, the time required to find the hidden plat-
form was recorded as the escape latency. The mice were
given a maximum of 60 s to find the hidden platform. If
a mouse failed to locate the platform within 60 s, the
session was terminated, a maximum escape-latency
score of 60 s was assigned, and the mouse was manually
guided to the hidden platform (10 s). To test spatial
memory, a single probe trial was conducted 24 h after
the last trial of the fourth day. The submerged platform
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was removed and the mice were placed into the pool
from the quadrant opposite to the quadrant where the
platform used to be (target quadrant). The mice were
allowed to freely swim for 60 s. The time spent in the
target quadrant and numbers of crossings through this
quadrant were recorded. Swimming speed was also re-
corded. All of the behavioral parameters of the mice
were tracked, recorded, and analyzed using SMART 3.0
software (Harvard Apparatus).

Immunohistochemistry and immunofluorescence

After the behavioral tests, the mice were anesthetized
and transcardially perfused with phosphate-buffered sa-
line (PBS; Boster, China). The brains were removed and
post-fixed with paraformaldehyde overnight. They were
then incubated in 30% sucrose in PBS for cryoprotec-
tion, and 30-pm serial sections were cut using a cryostat.
Next, the sections were incubated with 0.3% H,O, in
methanol for 10 min, followed by a blocking solution of
10% normal goat serum in PBS for 20 min. For immuno-
histochemistry, the sections were incubated with pri-
mary antibody (anti-NeuN (1:200, 24307, CST, USA),
anti-AB40 (1:500, 44047, NOVUS, USA), anti-Ap42
(1:200, 14974, CST, USA), and anti-Iba-1 (1:500,
100-1028, NOVUS, USA) at 4 °C overnight and then
37 °C for 30 min. After being washed in PBS the follow-
ing day, the sections were incubated with biotinylated
anti-mouse or anti-rabbit secondary antibodies (Boster,
China) in PBS for 30 min at 37 °C. They were then incu-
bated with avidin-biotin peroxidase solution (SABC Kkit,
Boster, China) and colorized with a 3,3’-diaminobenzi-
dine (DAB) kit (Boster, China). For immunofluorescence,
the sections were incubated with anti-DCX (Doublecortin,
1:200, 4604, CST, USA), anti-Ap (anti-Af, 1:200, 8243,
CST, USA), and anti-GFAP (Abcam, 1:800, 4674, Abcam,
USA) in the blocking solution at 4 °C overnight. The fol-
lowing day, the sections were washed three times in PBS
and incubated with Alexa 488- or Alexa 594-conjugated
IgG secondary antibodies (Invitrogen, CA, USA) at room
temperature for 2 h. Nuclei were counterstained by incu-
bation in 1 pg/ml 4’,6-diamidino-2-phenylindole (DAPI)
(Solarbio, China) for 15 min followed by exhaustive wash-
ing in distilled water. Coverslips were mounted in Gel
Mount (VECTASHIELD, CA, USA), and the sections
were inspected under a scanning confocal microscope
(Leica, Germany).

Quantitative analysis of immuno-positive cells present
in the sections was carried out under microscopic mag-
nifications (Olympus, Japan) and was assessed from six
random fields of view in each section (three sections per
animal) using CellF software (Olympus). In each ani-
mal, one coronal section was taken from the anterior
(- 1.22 mm from bregma), one from the middle (- 1.70 mm
from bregma), and one from the posterior hippocampus
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(- 2.80 mm from bregma). The data are presented as
the mean number of positive cells/mm? in the tiled
images. For the quantification of GFAP-positive cells,
cell identity was ascertained by DAPI localization.
Double-labeled cells positive for GFAP and DAPI
were counted per mm? from six random fields of
view in each section under a fluorescence microscope
(Olympus, Japan). The AP staining area (%) was calculated
relative to the total area of the analyzed region (% area =
plaque area/total area selected x 100). All of the cell
counting was performed in a blinded fashion.

Terminal deoxynucleotidyl transferase dUTP nick end
labeling detection

The in situ terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) technique was performed ac-
cording to the manufacturer’s instructions for the apop-
tosis kit (Roche, Basel, Switzerland). Briefly, sections
were immersed in 0.3% H,O, and then incubated for
120 min at 37 °C with TUNEL-labeling buffer, followed
by 30 min at 37 °C in the avidin-biotin peroxidase solu-
tion. Next, the sections were rinsed in PBS and incu-
bated for 10 min with DAB substrate solution. Three
coronal sections were used for analysis, where the num-
ber of TUNEL-positive cells was manually counted in
the cortex and hippocampus of the ipsilateral hemi-
sphere. Imaging and cell counting were conducted using
an Olympus light microscope (Olympus, Japan), and the
resulting data are presented as the number of TUNEL-
positive cells/mm?.

5-Bromo-2'-deoxyuridine labeling
5-Bromo-2’-deoxyuridine (BrdU) (Sigma-Aldrich) was
administered intraperitoneally as a single injection of
100 mg/kg per day for 1 week preceding the behavioral
tests, and a remainder of 100 mg/kg 24 h immediately
before the animals were killed. For BrdU labeling, the
non-specific binding sites were blocked by incubation in
a blocking serum (bovine serum albumin 3%, Triton
X-100 0.3%) for 10 min and then incubated with
anti-BrdU (Abcam) at 4 °C overnight. The following day,
brain sections were incubated for 1 h at room
temperature with secondary antibody (FITC; Abcam)
dissolved in the blocking serum. Nuclei were counter-
stained with DAPI. Coverslips were mounted in Gel
Mount (Vectashield, CA), and the sections were
inspected under a scanning confocal microscope (Leica,
Germany).

ELISA

Brain tissue was homogenized in RIPA buffer, sonicated
briefly, and centrifuged. The supernatants were collected
and quantified for soluble APB40 (DAB140B), Ap42
(DAB142), IL-1p (DY401-05), IL-6 (DY406-05), and
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TNF-a (DY410-05) using enzyme-linked immunosorb-
ent assay (ELISA) kits (R&D Systems, USA) according to
the manufacturer’s instructions.

Real-time reverse transcription-PCR

Total RNA from hippocampal and cortical tissue was ex-
tracted using TriZol reagent (Invitrogen, USA). Reverse
transcription was performed with an ExScript RT Re-
agent Kit (Takara Bio Inc., China). Real-time PCR ana-
lysis was conducted using SYBR Premix Ex Taq (Takara
Bio Inc., China). The PCR primer sequences were as fol-
lows: IL-1B (Accession number: NM_008361): 5'-AATG
CCACCTTTTGACAGTGAT-3' (sense) and 5'-TGCT
GCGGGATTTGAAGCTG-3’ (antisense); IL-6 (Acces-
sion number: NM_031168): 5-AGGATACCACTCCC
AACAGACC-3’" (sense) and 5'-AAGTGCATCATCGT
TCATACA-3’ (antisense); TNF-a (Accession number:
NM_013693): 5'-CACGTCGTAGCAAACCACC-3’ (sense)
and 5-TGAGATCCATGCCGTTGGC-3’ (antisense); f-actin
(Accession number: NM_007393): 5'-GCTGTGCTATGTTG
CTCTAG-3’ (sense) and 5'-CGCTCGTTGCCAATAGTG-3’
(antisense).

The PCR parameters included an initial denaturation
at 95 °C for 30 s, followed by 39 cycles of 95 °C for 5 s
and 60 °C for 1 min. The relative gene expression was
normalized to the mean expression level of -actin.

Western blotting

The expression levels of p-AMPK, p-P65NF-kB,
p-P38MAPK, Bacel, and APP were analyzed by Western
blotting. The protein samples were heated at 100 °C for
5 min with a loading buffer containing 0.125 M
Tris-HCl (pH 6.8), 20% glycerol, 4% SDS, 10%
B-mercaptoethanol, and 0.002% bromophenol blue. The
samples were then separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto polyvinylidene (PVDF) membranes.
The membranes were incubated with 3% bovine serum
albumin (BSA) in Tris-buffered saline with Tween
(TBST) (10 mmol/L Tris at pH 7.5, 150 mmol/L NaCl,
0.05% Tween-20) and probed with corresponding pri-
mary antibodies (anti-p-AMPK, anti-p-P38MAPK, anti-
p-P65NF-kB, anti-BACE1, and anti-APP; Cell Signaling
Technology, Boston, USA) at 4 °C overnight. After incuba-
tion with horseradish peroxidase-coupled secondary anti-
bodies for 2 h at room temperature, the protein bands
were quantified by densitometry (Syngene, UK).

Statistical analysis

All of the values are expressed as the mean * standard
error of the mean (SEM). For the Morris water maze exper-
iments, the escape latency during the spatial learning tests
was determined by a two-way repeated-measures analysis
of wvariance (ANOVA) with Student-Newman-Keuls
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post-hoc tests. All of the other experiments were analyzed
using one-way ANOVA followed by Bonferroni’s post-hoc
test. P < 0.05 was considered significant.

Results

UA ameliorates learning and memory deficits in APP/PS1
mice

To investigate the potential therapeutic benefit of UA
for the cognitive function of APP/PS1 mice, we con-
ducted the Morris water maze to assess spatial learning
and memory ability. We found that APP/PS1 mice spent
more time locating the platform (escape latency) com-
pared with wild-type (WT) mice, indicating a significant
cognitive decline in terms of spatial learning. In addition,
there was a significant difference in escape latency be-
tween UA-treated and vehicle-treated APP/PS1 mice,
implying that cognitive function in terms of spatial
memory was significantly improved by UA treatment
(Fig. 1a). Swimming velocity remained stable among the
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three groups, suggesting that UA treatment did not in-
fluence the locomotor activity of mice (Fig. 1b). These
findings showed that UA attenuated spatial learning defi-
cits in APP/PS1 mice.

To test the effect of UA on spatial memory consolida-
tion, probe trials were performed to assess the mainten-
ance of spatial memory. Compared with WT mice, APP/
PS1 mice took longer to reach the location of the miss-
ing platform and crossed the target quadrant less often
(Fig. 1c—e). However, UA-treated APP/PS1 mice showed
significantly more time spent in the target quadrant and
increased crossovers compared with vehicle-treated
APP/PS1 mice (Fig. 1c—e). These results indicated that
UA ameliorated the spatial memory of APP/PS1 mice.

UA prevents cell death in APP/PS1 mice

Neuronal degeneration and loss are regarded as the
main contributors to the cognitive decline in AD pa-
tients [15] and APP/PS1 mice [16]. To assess whether
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UA can attenuate cell death, we measured the change in
the number of NeuN-positive (NeuN") cells in the
hippocampus. Our data showed that UA treatment pre-
vented the loss of NeuN" immunoreactivity in the CAl
region of hippocampus of APP/PS1 mice (Fig. 2a, b). Re-
sults from the terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay further con-
firmed that UA significantly reduced cellular apoptosis
in the cortex and hippocampal CA1l of APP/PS1 mice
(Fig. 2c—h). These findings indicated that UA prevented
cell death in the cortex and hippocampus of APP/PS1
mice.

UA enhances hippocampal neurogenesis in APP/PS1 mice
Hippocampal neurogenesis plays an important role in
hippocampal-dependent learning and memory [17]. To
determine whether UA increases hippocampal neuro-
genesis, we performed bromodeoxyuridine (BrdU) and
doublecortin (DCX) staining. Our results showed that
significantly more BrdU-positive (BrdU™) cells were seen
in the UA-treated AD mice than in the vehicle-treated
AD mice (Fig. 3a, ¢). In addition, compared with WT lit-
termates, there were significantly fewer DCX-positive
(DCX") cells in the dentate gyri of vehicle-treated AD
mice and significantly more in the dentate gyri of
UA-treated AD mice (Fig. 3b, d). These results demon-
strated that the diminished capacity for neurogenesis in
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APP/PS1 mice was at least partially restored by UA
treatment.

UA alleviates plaque burden and A levels in APP/PS1 mice
To explore the effect of UA on the levels of AP plaque
deposits, immunohistochemistry with antibodies specific
to APB40 and AP42 was performed on fixed brain tissue.
The mean area covered by AP40-positive and Ap42-
positive plaques was markedly higher in the cortex and
hippocampus of APP/PS1 mice compared with WT mice
(Fig. 4a—d). However, UA treatment significantly de-
creased the mean area containing AP plaques in APP/
PS1 mice (Fig. 4a—d). In addition, we also quantified the
density of AP40- and AP42-positive plaques in the cor-
tex and hippocampus. Our results demonstrated that
UA significantly reduced the plaque number/mm® of
AP40-positive and AP42-positive plaques compared with
APP/PS1 mice (Fig. 4a, b, e, f), suggesting an inhibitory
effect of UA on AP deposition.

Next, we performed an enzyme-linked immunosorbent
assay (ELISA) to quantify AP levels in the cortex and
hippocampus of the AD mice. Our results showed that
soluble AP40 and AP42 levels were high in APP/PS1
mice (Fig. 4g, h), but UA treatment significantly reduced
the levels of soluble AP40 and AP42 in the cortex
and hippocampus compared with the APP/PS1 group
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(Fig. 4g, h). These results demonstrated that UA de-
creased AP levels in APP/PS1 mice.

UA attenuates reactive gliosis in APP/PS1 mice

A typical hallmark of the AD brain is the presence of acti-
vated astrocytes and microglia surrounding A plaques,
which contributes to the inflammatory process of brain
injury [18]. To investigate the anti-inflammatory effects of
UA on APP/PS1 mice, we assessed the microglial and
astrocytic reactivity in the cortex and hippocampus by
staining with antibodies against Ibal and GFAP, respect-
ively. The staining revealed that reactive astrogliosis and
microgliosis were markedly observed in the cortex and
hippocampus of APP/PS1 mice compared with WT con-
trols. Moreover, staining for both activated microglia and
astrocytes was heavy in the vehicle-treated APP/PS1 mice
and significantly less intense in the UA-treated APP/PS1
mice (Fig. 5a—d). We also observed that Ap plaques were
surrounded by reactive microglia and astrocyte in the
brains of vehicle-treated APP/PS1 mice, whereas reactive
microglia and astrocytes were reduced around Af plaques
in the brains of UA-treated APP/PS1 mice (Fig. 5e, f).
These results indicated that UA effectively decreased
microglia and astrocyte activation in APP/PS1 mice.

UA decreases proinflammatory cytokine levels in APP/PS1
mice

Activated glia stimulated by Ap has been reported to
upregulate the expression of several proinflammatory

chemokines and cytokines including IL-1p, IL-6, and
TNF-a, which could result in an increase of A produc-
tion, neuronal death, and cognitive deficits [19]. Thus,
we measured the expression of these three cytokines in
the different experimental groups. Our results demon-
strated that the levels of IL-1f, IL-6, and TNF-a were
markedly increased in the cortex and hippocampus of
the APP/PS1 group compared with the WT group
(Fig. 6a—c). Interestingly, UA significantly reduced the
levels of the inflammatory mediators IL-1p and TNF-a
in both the cortex and hippocampus of APP/PS1 ani-
mals (Fig. 6a—c), suggesting that UA could inhibit the
secretion of inflammatory cytokines. In addition, quanti-
tative polymerase chain reaction (qPCR) results con-
firmed the above results (Fig. 6d—f). Taken together,
these data indicated that UA effectively decreased the
expression of proinflammatory factors released by acti-
vated glia.

Multiple proteins participate in the working mechanism
of UA in APP/PS1 mice

Previous studies have shown that 5'-AMP-activated pro-
tein kinase (AMPK)/Beta-site APP-cleaving enzyme 1
(Bacel) signaling was responsible for APP processing
and AP production [20, 21]. It is well known that the re-
lease of proinflammatory factors requires nuclear factor
kappa-light-chain-enhancer of activated B cells (NFkB)
and/or the activation of the mitogen-activated protein
kinase (MAPK) p38. AMPK/NF«kB and AMPK/p38MAPK
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signaling pathways are involved in the decreased neuroin-
flammatory response [22, 23]. To further investigate the
mechanisms involved in UA-mediated neuroprotection
and anti-inflammation, the activation/phosphorylation of
AMPK, p65NFkB, p38MAPK, and Bacel, APP proteins
were studied. Our results showed that in the cortex and
hippocampus of APP/PS1 mice, phosphorylated (p-)
AMPK was markedly decreased compared with the WT
group (Fig. 7a, b), whereas the levels of p-P65NF«B,
p-P38MAPK, and Bacel, APP were notably enhanced
compared with the WT group (Fig. 7c—j). Strikingly, after
UA treatment, the APP/PS1 mice showed a remarkable
increase in the expression of p-AMPK and a significant
decrease in the expression of p-P65NFkB, p-P38MAPK,
and Bacel, APP (Fig. 7a—j). Our findings indicated that

the UA-induced alterations of these critical signaling pro-
teins might contribute to its neuroprotective effect in AD.

Discussion

AD is a neurodegenerative disorder characterized by
progressive memory deficits and cognitive decline. Our
findings in this study demonstrated that APP/PS1 trans-
genic mice exhibited severe memory loss. Recent reports
have indicated that dietary supplementation with pom-
egranate extract (PE), which is ultimately metabolized by
gut microflora to yield UA, ameliorated the loss of
synaptic-structure proteins and improved behavioral per-
formance in APPsw/Tg 2576 mice [24, 25] and APP/PS1
mice [26]. In contrast, another study reported that PE
did not improve the cognitive performance of transgenic
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AD mice [27]. We speculated that the contradictory effects
of PE may be attributed to its poor absorption, different ac-
tive ingredients, and functional concentrations in vivo. In
this study, APP/PS1 mice were intragastrically administered
with UA. We found that UA treatment significantly amelio-
rated cognitive impairment. Our study also elucidated some
mechanisms underlying the beneficial effects of UA in AD.

The brain in AD shows a selective and progressive de-
generation of neurons, which can contribute to cognitive
impairment [28]. Previous study has shown marked
neuronal loss in both the CAl field and dentate gyrus
(DG) in APP/PS1 mice at 16 months of age [29]. No
neuron loss was found in the neocortex of aged APPPS1
mice but a significant 11% neuron loss was found in the
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dentate gyrus of 17-month-old APPPS1 mice compared
with age-matched control mice [30]. However, neuron
loss is also reported for the hippocampal CAl and
frontal cortex but did not reach statistical significance in
12-month-old APP/PS1 mouse [31]. Amazingly, study
shows that neuron death has been significantly enhanced
in the cortex and hippocampus of 3-month-old male
APP/PS1 mice compared with age-matched control mice
[32]. In the current study, we found that 30-week-old
APP/PS1 mice had substantial neuronal loss in the hip-
pocampal CA1l. Studies have confirmed that neuronal
apoptosis is observed both in APP/PS1 mice [18] and
AD patients [33]. Inhibiting hippocampal neuronal
apoptosis relieved the cognitive dysfunction [34]. In our
study, we found that UA significantly increased the
number of NeuN-positive neurons and suppressed the
apoptosis of hippocampal cells in APP/PS1 mice. These
results indicated that UA not only repaired damaged
neurons but also prevented hippocampal neuronal loss
in APP/PS1 mice. Impaired hippocampal neurogenesis is
involved in cognitive dysfunction. Some natural nuts
and berries, when metabolized into UA, were shown to

enhance mammalian hippocampal neurogenesis and im-
prove cognition [35, 36]. Accordingly, we observed de-
creased neurogenesis in the hippocampus of APP/PS1
mice. Importantly, UA treatment of APP/PS1 mice sig-
nificantly increased hippocampal neurogenesis, which
might explain the improvement of learning and memory
we observed in UA-treated transgenic animals.

Excessive AP aggregation into plaques is widely con-
sidered as one of the first changes that occur in the
brain of AD [37]. Recent reports have shown that dietary
supplementation with PE delayed the formation of senile
plaques by decreasing the brain content of Ap1-40 and
AP1-42 [24, 26]. However, a different study showed that
urolithins, but not PE or its predominant ellagitannins,
prevented P-amyloid fibrillation in vitro [38]. In our
study, we observed a marked increase of AP levels in the
brains of APP/PS1 mice. Notably, UA treatment reduced
AP deposits in the cortex and hippocampus of APP/PS1
mice, suggesting that UA inhibited the accumulation of
AP deposits in APP/PS1 mice.

Previous studies have shown that neuroinflammation
increased AP production, and that aggregated A
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triggered microgliosis and astrogliosis, resulting in a pro-
inflammatory state [39]. In our study, UA not only de-
creased the levels of activated microglia and astrocytes,
but it also reduced AP levels in AD mice. It has been re-
ported that urolithins possessed anti-inflammatory and
antioxidative properties, with urolithin A exhibiting the
strongest anti-inflammatory activity [10, 12, 40]. There-
fore, we hypothesized that UA might suppress neuroin-
flammation and lead to the decrease of AP production.
Accordingly, we found that UA treatment reduced the
production of inflammatory cytokines in APP/PS1 mice,
which suggested that UA may also affect glia. Previous
evidence has demonstrated the infiltration of activated
glia around AP plaques in AD brains [41], indicating that
glia may provide the initial neuroprotective effect in AD
pathology by phagocytosing AP. Consistent with the ob-
servations above, our results showed that UA might

attenuate the AP burden in APP/PS1 mice by promoting
glial phagocytosis (Fig. 5e, f).

The UA-mediated inhibition of neuroinflammation
and neuronal apoptosis may contribute to the improve-
ment of AD pathophysiology. However, the underlying
molecular mechanisms are still largely unclear. Previous
studies reported that PE activated AMPK in the hypo-
thalamus [42], the liver, and adipose tissue [43]. Phos-
phorylated AMPK activated Nrf2, which promoted the
expression of antioxidant proteins that protect against
the oxidative damage triggered by inflammation [44]. In
vitro data showed that UA attenuated triglyceride accu-
mulation via AMPK activation in adipocytes as well as
hepatocytes [45]. However, few studies have investigated
whether AMPK is activated by urolithins in vivo. Our
data addressed the question of the potential activation of
AMPK by urolithins in vivo by showing that UA
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dramatically enhanced cortical and hippocampal AMPK
activation in APP/PS1 mice.

Previous evidence also suggested that AMPK activation
decreased AP production and could present a new poten-
tial therapeutic strategy in AD [46]. Activated AMPK has
been reported to regulate the expression and trafficking of
Bacel in APP processing and AP generation [21]. Further-
more, AMPK activation increased autophagy signaling
and facilitated lysosomal degradation of AP [47]. In our
study, we found that the levels of Bacel were reduced by
UA treatment in APP/PS1 mice, indicating that AMPK/
Bacel signaling may be involved in the UA-induced de-
crease in A deposition by reducing the cleavage of APP.

Activation and nuclear translocation of NFkB have
been shown to elicit the release of proinflammatory cy-
tokines, whereas inhibiting AMPK/NF«B signaling re-
duced the production of proinflammatory cytokines [22].
A large body of evidence has demonstrated that AMPK
activation repressed NFkB signaling by activating SIRT1
[48], stimulating FOXO proteins [49], and suppressing
ER stress [50]. Recent studies suggested that UA inhib-
ited the phosphorylation and nuclear translocation of
the NFkB p65 subunit, which reduced the expression of
proinflammatory genes and diminished nitric oxide pro-
duction [51, 52]. Consistent with this finding, we observed
an obvious enhancement of NF«B phosphorylation in
APP/PS1 mice, indicating that AP activated NF«kB. More
importantly, UA attenuated the levels of p-P65NFkB,
which explains the anti-inflammatory effects of UA in
APP/PS1 mice. In addition, P38MAPK has also been
shown to regulate proinflammatory signaling networks
and the biosynthesis of cytokines including TNF-a and
IL-1P [53]. Studies have demonstrated that the activation
of P38MAPK by AP occurred in the postmortem brains of
AD patients and animal models, indicating that
p38MAPK is involved in the pathogenesis of AD [54]. In-
hibition of P38MAPK effectively alleviated the inflamma-
tory response, AP deposits, and cognitive impairment in
brains with AD [55, 56]. Thus, P38MAPK inhibitors are
considered promising drug candidates for the treatment
of AD. Whether the inflammation in AD is primarily in-
duced through P38MAPK signaling remains unclear and
requires further study. Many studies have provided evi-
dence that UA decreased the phosphorylation levels of
P38MAPK in LPS-stimulated microglia and IL-1pB-treated
human colonic fibroblasts [14]. However, another study
revealed that UA increased the mRNA and protein ex-
pression of P38MAPK in HepG2 cells and bladder cancer
cells [57, 58]. Our study found that activated P38MAPK
was affected by UA treatment, with significant decreases
in the levels of p-P38 observed in the brains of UA-treated
APP/PS1 mice. Taken together, these findings suggest that
suppression of P65NFkB and P38MAPK activity may
contribute to the anti-inflammatory effect of UA.
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Conclusion

In summary, our results in an AD mouse model demon-
strated the protective effects of UA on AD pathology by
its targeting of multiple pathological processes such as
reactive gliosis, inflammatory signaling, AB plaque for-
mation, and apoptosis. Our findings indicate that UA
may serve as a promising therapeutic agent for AD.
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