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Abstract

Multiple sclerosis (MS) is an inflammatory-neurodegenerative disease of the central nervous system presenting with
significant inter- and intraindividual heterogeneity. However, the application of clinical and imaging biomarkers is
currently not able to allow individual characterization and prediction. Complementary, molecular biomarkers which
are easily quantifiable come from the areas of immunology and neurobiology due to the causal pathomechanisms
and can excellently complement other disease characteristics. Only a few molecular biomarkers have so far been
routinely used in clinical practice as their validation and transfer take a long time. This review describes the
characteristics that an ideal MS biomarker should have and the challenges of establishing new biomarkers. In
addition, clinically relevant and promising biomarkers from the blood and cerebrospinal fluid are presented which
are useful for MS diagnosis and prognosis as well as for the assessment of therapy response and side effects.
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Introduction
Multiple sclerosis (MS) is a chronic autoimmune disease
characterized by inflammatory demyelination and neuro-
degeneration in the central nervous system (CNS) [1].
The disease shows a great heterogeneity with regard to
radiological and histopathological changes, clinical
appearance and progression, as well as therapy response
[2–6]. It is therefore very important to define specific
features of the disease that facilitate diagnosis and prog-
nosis and allow an assessment of the therapeutic re-
sponse and risk of side effects [7–9]. Currently, the
lesion load in the CNS determined by magnetic reson-
ance imaging (MRI) as well as clinical characteristics,
e.g., relapse rate and disability progression, play the most
important role [10]. However, although it is possible to
quantify and standardize these characteristics in larger
patient groups, it is not possible until now in individual
patients [11, 12].
Molecular biomarkers, on the other hand, are easily

quantifiable and can excellently complement MRI and
clinical characteristics [13]. Biomarkers for MS come
from the areas of immunology and neurobiology due to
the causal pathomechanisms [14]. Although the

importance of molecular biomarkers has been increas-
ingly recognized in recent years, their validation is a
lengthy process, so that only a few biomarkers have so
far been routinely used in clinical practice [15]. How-
ever, the number of potential biomarkers at different
stages of testing is promising. This review describes the
characteristics that an ideal MS biomarker should have
and the challenges of establishing new biomarkers [16].
In addition, clinically relevant and promising biomarkers
from the blood and cerebrospinal fluid (CSF) are pre-
sented which are useful for MS diagnosis and prognosis
as well as for the assessment of therapy response and
side effects.

What makes an ideal MS biomarker?
A biomarker is defined as a characteristic that can be
objectively measured and evaluated and serves as an in-
dicator of normal biological processes, pathological pro-
cesses or pharmacological reactions to therapy [17].
Ideally, this is a binary system, in other words a charac-
teristic that is present in people with a certain disease
and is absent in healthy people or people with another
disease or vice versa. If the disease worsens or improves,
the concentration of the biomarker should increase or
decrease accordingly [18]. Another characteristic of an
ideal biomarker is that it is safe for the patient and as
easy to detect as possible, in the best case it is a non-
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invasive method. The analytical detection method should
be highly accurate and reproducible and at the same
time fast, simple, and cost-effective in order to ensure
comprehensive implementation [19]. Thereby, the result
of the detection method should be insensitive to system-
atic influencing factors such as sample collection, sample
processing, and sample storage [20].
In addition to the typical clinical characteristics of

a disease, imaging biomarkers are often used with
the aid of imaging methods. In MS, for example,
MRI provides information on the size, number, age,
and development of lesions in the CNS and plays an
important role in diagnosis and therapy monitoring
[21–23]. In the future, brain atrophy could also gain
importance if its measurement becomes possible in
individual patients [24–29]. Imaging biomarkers are
distinguished from molecular biomarkers, which
comprise deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), and proteins. The advantages of DNA as
a molecular marker are a less demanding handling
as well as an easier and less expensive detection
[30]. In contrast, RNA and proteins are quantitative
characteristics that, as opposed to DNA, are suitable
for monitoring disease specific processes. In the field
of MS, all established molecular biomarkers are cur-
rently proteins, most of them antibodies [15, 31, 32].
For the detection of molecular biomarkers, a sample

must be taken from the patient. In MS, the body fluids
blood and CSF, which offer different advantages and dis-
advantages, are particularly suitable (Table 1). Since
blood collection is the less invasive procedure, the valid-
ation of new molecular biomarkers should examine
whether serum or plasma detection is as suitable as CSF
detection.

Challenges in the establishment of biomarkers
In the development and establishment of new bio-
markers, the above-mentioned properties of an ideal bio-
marker have to be taken into account and some
additional difficulties have to be overcome, which are
described below [35].

Sensitivity and specificity are two key figures of bio-
markers. Sensitivity describes the proportion of true
positive test results among those who are actually af-
fected by the disease. Specificity, on the other hand, indi-
cates the proportion of true negative results among
those who are not ill (Table 2) [36]. Since high sensitiv-
ity is usually at the expense of specificity and vice versa,
it is of great importance to identify biomarkers that
achieve a satisfactory balance of both properties. Other
important key figures are the positive and negative pre-
dictive value of a biomarker. These indicate the propor-
tion of patients with a positive or negative test result
who are correctly diagnosed.
Various analytical methods are often available for the

detection of molecular biomarkers. However, the use of
different detection methods can lead to differing test re-
sults and thus severely limit the informative value of the
biomarker. Research on interleukin (IL)-21 as potential
biomarker to predict the risk of secondary autoimmunity
after alemtuzumab therapy shows that even the ex-
change of individual components using the same detec-
tion method can change the results [37]. In this case, the
use of other ELISA (enzyme-linked immunosorbent
assay) kits for determining the concentration of IL-21 in
the serum no longer showed a predictive association
[38]. Therefore, the development of molecular bio-
markers requires validation with different detection
methods [39].
Initial investigations of new biomarkers usually take

place in small patient groups, followed by confirmation
of the biomarker candidates in large, independent co-
horts. However, this transfer of the results to large popu-
lations is not always successful. For example, anti-myelin
oligodendrocyte glycoprotein (MOG) and anti-myelin
basic protein (MBP) antibodies were identified in a study
of 103 patients as predictors for the development of MS
after a first demyelinating event [40]. In a subsequent
study with 462 participants, however, this could not be
confirmed [41]. The same was observed for the anti-
KIR4.1 antibody [42] which had previously been pro-
posed as a biomarker for MS diagnosis [43]. Biomarker

Table 1 Advantages and disadvantages of the detection of biomarkers in blood and cerebrospinal fluid; modified according to [33,
34]

Advantages Disadvantages

Blood • Safe, quick, and easy collection
• Different timepoints could be measured
• Quite large quantities can be analyzed

• Does not necessarily reflect changes in the CNS
• Diurnal variation of many soluble markers
• Markers affected by a lot of processes (degradation,
concomitant disease…)

• Potential preanalytical bias
• Lower concentration of potential biomarker

Cerebrospinal fluid • Best reflects the processes in the CNS
• Lower concentration of potential biomarker

• Exposure to invasive lumbar puncture
• Only low quantities can be obtained
• Difficult to measure different timepoints
• Potential preanalytical bias
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development is comparable with drug development as
independent validation has to be demonstrated in large
cohorts after positive pilot test. If biomarker tests are go-
ing to be used to drive patient care, than an understand-
ing and careful assessment of these concepts are
essential, since “A Bad Biomarker Test Is as Bad as a
Bad Drug” [44].
Due to the challenges described above in establishing

new biomarkers, careful validation of potential candi-
dates is essential [45]. In doing so, the robustness of the
detection procedure should be checked and the validity
of the results in large patient populations confirmed. As
a result, the validation process is often lengthy and usu-
ally takes between 5 and 15 years [46, 47]. Therefore, the
expansion of the repertoire of biomarkers for MS has so
far been slow. Molecular biomarkers can complement
MRI and clinical markers in different phases of MS dis-
ease. These include diagnosis and prognosis as well as
response to progression-modifying therapies and the oc-
currence of side effects. The different types of bio-
markers in MS are presented in Fig. 1.

Molecular biomarkers for MS diagnosis
Biomarkers that are suitable for MS diagnosis must
make it possible to differentiate between patients with
MS and healthy people or those with other diseases.

Oligoclonal bands
Oligoclonal bands are bands of immunoglobulins that
are seen when patient’s blood serum and CSF are ana-
lyzed in parallel. It has been known for some time that
oligoclonal bands (OCB) occur in the analysis of CSF (by
isoelectric focusing) in MS patients [48]. They are cre-
ated by immunoglobulin G (IgG) and M (IgM) produced
by plasma cells in the CNS [49]. The existence of these
bands within the CSF, but not within the serum, is a
strong indicator of intrathecal antibody synthesis and,
interestingly, is found in nearly all patients with clinically
definitive MS. Intrathecal antibodies are mainly

produced by plasma cells (terminally differentiated B
cells), and hence an involvement of B cells in the patho-
genesis of MS has long been suspected [49]. In more
than 95% of MS patients, OCB are detectable in the
cerebrospinal fluid, but mostly not in serum [50]. How-
ever, OCB are not MS specific and can also occur in
other inflammatory CNS diseases [51]. If other diagnoses
are excluded though, OCB support the diagnosis of MS.
They [49] were already introduced in 1983 as a diagnos-
tic criterion in MS and thus represent the first bio-
marker of this disease [52]. After OCB have meanwhile
not been used for diagnosis according to the McDonald
criteria, they are now again part of the diagnostic algo-
rithm in the updated version of 2017 [53]. This shift to
substitute of a positive CSF result for dissemination in
time rather than to substitute for dissemination in space
is a practical one, but it reinforces the responsibility of
clinical neurologists to request state-of-the-art CSF ana-
lyses [54, 55]: Patients with typical clinical presentations,
typical lesions, and with alternative diagnoses reasonably
ruled out most probably have multiple sclerosis. Demon-
strating the presence of OCB will provide supporting
evidence of the immune and inflammatory nature of the
disease without having to wait for dissemination in time
to occur [53, 55, 56]. OCB are thus an established bio-
marker with significance for MS diagnosis.

IgG Index
The immunoglobulin (Ig) G index describes the ratio of
the CSF/serum quotient of IgG to the CSF/serum quo-
tient of the reference protein albumin [57]. The albumin
quotient, albumin in CSF/albumin in serum, is used as a
measure of blood-CSF barrier dysfunction in MS [58].
IgG index is used a marker of intrathecal production of
immunoglobulins. A value of IgG index > 0.7 is an indi-
cator of an increased intrathecal B cell response and
thus indicates the presence of MS [18]. About 70% of
MS patients have an increased IgG index [59, 60].
Hence, the sensitivity of this biomarker is albeit lower

Table 2 Representation of the sensitivity and specificity as well as the positive and negative predictive value of a biomarker using
the example of diseased and non-diseased test subjects

Ziemssen et al. Journal of Neuroinflammation          (2019) 16:272 Page 3 of 11



than that of the OCB [50]. Furthermore, an increased
IgG index rarely occurs in MS patients without OCB.
Nevertheless, the IgG index is one of the established bio-
markers of MS diagnosis and is regularly determined in
the course of CSF diagnostics.

Measles, rubella, varicella-zoster reaction
If antibodies against the neurotrophic viruses, measles
virus, rubella virus, and varicella-zoster virus (VZV), are
detected in the CSF, this suggests a poly-specific intra-
thecal B cell response. Therefore, the determination of
measles, rubella, varicella-zoster (MRZ) reaction is one
of the recommended measures in cases of suspected MS
[61, 62]. Brettschneider and colleagues also showed that
an MRZ reaction is significantly more frequently detect-
able in patients with a conversion from clinically isolated
syndrome (CIS) to MS than in patients who do not

develop clinically definite MS [63]. This finding supports
the notion that immunological changes related to B cell
activation and intrathecal polyspecific IgG synthesis
occur early on in the development of MS [63]. In MS,
the polyspecific intrathecal MRZ humoral response
seems to show the enhanced B cell-promoting
environment.

Anti-aquaporin-4 antibodies
Aquaporin-4 (AQP-4) is a water channel protein
expressed in the CNS by astrocytes which plays a major
role in the regulation of water homeostasis in the CNS
[64–67]. Antibodies against this protein are detectable in
about 75% of patients with neuromyelitis optica
spectrum disorder (NMOSD), but not in MS patients
[68]. This makes anti-aquaporin-4 antibodies exemplary
for biomarkers with a high specificity. It is the first

Fig. 1 Different types of biomarkers in multiple sclerosis: Diagnostic biomarkers are used to confirm the diagnosis of MS. A test used to
diagnose a disease often measures a type of biomarker called a “surrogate.” Diagnostic biomarkers may facilitate earlier detection of a disorder
than can be achieved by other approaches. A prognostic biomarker helps to indicate how a disease may develop in an individual when a
disorder is already diagnosed. The presence or absence of a prognostic marker can be useful for the selection of patients for treatment but does
not directly predict the response to a treatment. This is more specified by the predictive biomarker which helps to determine which patients
are most likely to benefit from a specific treatment option. Predictive diagnostics can provide information about how well a treatment is likely to
work in a particular patient or about the likelihood of that treatment causing an unwanted side effect. For prognosis and prediction, disease
activity biomarkers comprise biomarkers to measure inflammatory and/or neurodegenerative components of disease. For personalized MS
treatment, treatment-response biomarkers could be helpful to differentiate patients regarding their outcome related to efficacy and side
effects (treatment responders and non-responders as well as patients with and without adverse drug reactions). In addition, these treatment-
response markers could be applicable for all treatments or be specific for a specific treatment only
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clinically established molecular biomarker that enables
differentiation between various inflammatory demyelin-
ating diseases of the CNS. Detection of anti-aquaporin-4
antibodies is usually performed in serum in patients sus-
pected of having NMOSD [69]. Different detection
methods are available: indirect immunofluorescence,
ELISA, flow cytometry, and cell-based assays [70]. The
latter are characterized by particularly high specificity
and sensitivity and are therefore recommended for the
detection of anti-aquaporin-4 antibodies [71].

Anti-MOG antibodies
MOG is a myelin protein expressed exclusively on the
surface of myelin sheaths and membranes of oligoden-
drocytes and a potential target molecule for the auto-
immune response in demyelinating diseases [72–74].
Unlike initially postulated, anti-MOG antibodies are not
suitable for the diagnosis or prognosis of MS, but rather
for differential diagnosis. Using state-of-the-art detection
methods (cell-based methods), it was shown that anti-
MOG antibodies are found in a subgroup of pediatric
patients with acute disseminated encephalomyelitis
(ADEM), patients with clinical symptoms of NMOSD,
and patients with bilateral optic neuritis in particula
r[75]. In classical MS, however, high anti-MOG antibody
titres are rare, with the frequency of seropositive MS pa-
tients being highest in the pediatric patient group. In a
study by McLaughlin and colleagues, the prevalence of
anti-MOG antibodies was 38.7% in patients with an ini-
tial clinical event under 10 years of age, whereas only
4.3% of patients with onset of the disease in adulthood
(> 18 years of age) were seropositive [76]. By comparing
this clearly distinct cohort to AQP-4+ NMO as well as
MS, we propose that MOG+ CNS demyelinating disease
represents a distinct novel disease entity [77, 78]. So far,
anti-MOG antibodies are not routinely determined bio-
markers in clinical practice despite these new findings.

Antinuclear antibodies
Antinuclear antibodies (ANA) are tissue non-specific
autoantibodies against components of the cell nucleus,
the concentration of which is determined in the serum
[79]. According to the guidelines of the German Neuro-
logical Society, the ANA test is an obligatory laboratory
test for differential diagnosis [80]. A persistently high
titer indicates collagenoses such as systemic lupus ery-
thematosus (SLE) [81]. However, in a recent publication,
Becker and colleagues discussed whether a positive ANA
test without clinical evidence of connective tissue disease
is helpful and concluded that testing without suspicion
should be well considered [82]. They also suggested that
the antibodies against double-stranded DNA (dsDNA),
which are also typical for SLE, should only be deter-
mined after a positive ANA test result. In the German

guideline, however, the detection of anti-dsDNA anti-
bodies is also one of the obligatory laboratory tests for
differential diagnosis [80].

Molecular biomarkers for MS prognosis
Biomarkers for MS prognosis can provide information
on the course of disease activity and indicate conversion
to another form of MS, for example from CIS to
relapsing-remitting MS (RRMS) or from RRMS to sec-
ondary progressive MS (SPMS).

Oligoclonal bands
The detection of oligoclonal IgG bands in CSF is associ-
ated with a conversion from CIS to MS and can there-
fore be described as a biomarker for MS prognosis. For
example, a study of Tintore and colleagues with 1015
patients showed that oligoclonal IgG bands increased
the risk of clinically confirmed MS (adjusted hazard ratio
1.3 [1.0–1.8]) and disability accumulation (adjusted haz-
ard ratio 2.0 [1.2–3.6]) independently of other factors
[83]. In addition, in an examination of Kuhle and col-
leagues, oligoclonal IgG bands proved to be the stron-
gest prognostic factor for conversion from CIS to MS,
along with the lesion load and the age at the onset of
the disease [84]. A recent study also showed a prognostic
significance of oligoclonal IgG bands in the conversion
of radiologically isolated syndrome (RIS) to CIS [85].
OCB can also result from the production of IgM in the
CNS. In some studies of, so far, only one Spanish re-
search group, these oligoclonal IgM bands have been as-
sociated with an increased risk of conversion from CIS
to MS and with an aggressive course of the disease [86,
87]. However, there are also studies that show no correl-
ation of oligoclonal IgM bands with the MS prognosis
[88]. Therefore, the usefulness of oligo IgM as prognos-
tic marker remains to be confirmed by future studies.

Chitinase-3-like-1
The protein chitinase-3-like-1 is a glycosidase secreted
by monocytes, microglia, and activated astrocytes [89].
The physiological role of chitinase-3-like-1 (CHI3L1) in
the CNS is unknown; however, its distribution in inflam-
matory lesions suggests that it might be an important
component of the astrocytic response to modulate CNS
inflammation CHI3L1 1 [90–92]. It is usually detected in
the CSF. Cantó and colleagues showed in a multicentre
longitudinal cohort study with 813 participants that the
CHI3L1 concentration is an independent risk factor for
the conversion from CIS to MS. High CHI3L1 levels
were also associated with faster disability progression
[93]. Although CHI3L1 is not yet clinically established, it
is a promising candidate as a biomarker of MS prognosis
and probably treatment response [94].
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Neurofilaments
Neurofilaments (NF) are neuronal cytoskeletal proteins
consisting of a light (NFL), an intermediate (NFM), and
a heavy (NFH) chain [95]. They determine the diameter
of axons and are involved in axonal transport. If axonal
or neuronal damage occurs, NF are released and can be
detected in the CSF and blood [96]. For detection in
blood, an ultra-sensitive technique called single molecule
arrays (SIMOA) has been developed only recently, for
the first time allowing the detection of NFL in serum
[97]. Compared to detection using ELISA or electroche-
miluminescence (ECL) based assays, SIMOA is charac-
terized by > 25 times higher analytical sensitivity
(SIMOA: 0.62 pg/ml, ECL assay: 15.6 pg/ml, ELISA: 78.0
pg/ml) [98]. NFL are also highly stable and insensitive to
the usual storage conditions, which increases the robust-
ness of the detection methods [99]. According to a study
by Disanto and colleagues, MS patients have elevated
NFL levels compared to the control group, with a strong
association of values measured simultaneously in CSF
and serum [100]. Serum NFL levels also correlate with
MRI activity, degree of disability, and brain atrophy rate
[100–102]. Furthermore, NFL is also suitable as a prog-
nostic biomarker for the conversion from CIS to MS
[18, 103]. A recent study also showed a prognostic sig-
nificance of serum NFL in the conversion from RIS to
CIS [85].
Overall, the determination of serum NFL concentra-

tion, which does not necessarily require a lumbar punc-
ture but can be now measured in the blood, seems to
correlate with many clinical and magnetic tomographic
characteristics of MS [96, 104, 105]. A future establish-
ment as a prognostic biomarker in clinical practice is
therefore conceivable. While NFL measurement in
serum is a well-established marker of neuroaxonal dam-
age in MS, there are promising data on astroglial
markers in serum as glial fibrillary acid protein (GFAP)
[106, 107].

Molecular biomarkers for monitoring therapy
response
Thanks to the progressive elucidation of the MS patho-
physiology, a number of disease-modifying therapies
with specific mechanisms of action are now available.
However, not all patients respond equally to treatment.
In order to be able to treat each patient with the indi-
vidually optimized MS treatment at the right time, it is
necessary to know biomarkers for predicting the thera-
peutic response and monitoring its effectiveness.

Neutralizing antibodies against interferon-β
Neutralizing antibodies can be formed in response to
the administration of mostly protein drugs and prevent
its actual mechanism of action. Such antibodies are

detected in serum. In interferon therapy (IFN)-β, neu-
tralizing antibodies are produced in up to 40% of pa-
tients, depending on the type of IFN. This usually occurs
during the first 2 years of treatment [108]. Neutralizing
antibodies against IFN-β have been shown to reduce its
positive effect on annual relapse rate, disability progres-
sion and MRI activity [12]. Therefore, a change of ther-
apy is recommended within 3 to 6 months if two
positive test results are obtained [109]. Neutralizing anti-
bodies against IFN-β therefore represent a prognostic
biomarker for poor therapy response. An indirect bio-
marker for the biological activity of IFN-β is the myxo-
virus resistance protein A (MxA), an antiviral protein
selectively induced by IFN-β [12, 110, 111]. In this case,
detection takes place by expressing MxA mRNA in
blood cells. If neutralizing antibodies against IFN-β with
a low to medium titer were detected in a patient, the
MxA amount can be determined as additional informa-
tion. With a low MxA level meaning low IFN-β bioavail-
ability, a change in therapy should be considered [109].

Neutralizing antibodies against natalizumab
Neutralizing antibodies can also be formed during ther-
apy with natalizumab, the monoclonal antibody against
integrin α4β1 and α4β7 on leukocytes. In an average of
6% of patients treated with natalizumab, neutralizing
antibodies are detected at least once. In > 90% of cases,
these occur during the first three months of treatment
[12]. The neutralizing antibodies lower the serum level
of natalizumab and, with continuous presence, are asso-
ciated with a reduced efficacy of the therapy [112, 113].
For example, a study by Vennagoor and colleagues
showed an association of high neutralizing antibody
titers with the occurrence of episodes and gadolinium-
enhancing lesions in MRI [114]. Although there are cur-
rently no guidelines for the routine use of neutralizing
antibodies against natalizumab as prognostic biomarkers
for therapy response, it is recommended that a corre-
sponding test should be performed within 3 to 4 months
after the start of therapy (in almost all cases the anti-
bodies are formed within the first 4 to 6 months) and
when relapses occur [12, 115, 116]. Since neutralizing
antibodies are also associated with the occurrence of
infusion-related side effects, they also represent a bio-
marker for therapeutic side effects [117]. Neutralizing
antibodies may be of relevance for other monoclonal
antibodies as well such as Ocrelizumab depleting CD20+
B cells or Alemtuzumab depleting CD52+ cells.

Neurofilament light chain
Biomarkers that show a correlation with disease activity
in RRMS patients can provide important indications for
therapeutic response. Since the release of NFL is related
to the occurrence of axon damage and the NFL
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concentration correlates with disease activity, the protein
could be such a biomarker for therapeutic response [96,
118, 119]. Several studies have already shown an average
decrease in the amount of NFL in CSF of MS patients
following treatment with natalizumab [120], fingolimod
[121], mitoxantrone or rituximab [122], or alemtuzumab
[123]. For example, Gunnarsson and colleagues observed
a decrease in NFL levels to about the level of healthy
controls 6 to 12 months after the start of natalizumab
therapy [120]. Treatment with fingolimod also led to a
significant decrease in NFL levels in CSF after 12
months according to a study by Kuhle and colleagues,
whereas no significant change occurred in the placebo
group [121]. A decrease in NFL levels was also observed
in serum after treatment with progression-modifying
therapies, including natalizumab, fingolimod, and mitox-
antrone [124, 125]. In a study by Akgün et al. in
alemtuzumab-treated patients using monthly serum NFL
(sNFL) assessment, clinical or MRI disease activity was
paralleled by an increase of sNFL level (increase up to
20-fold for 3–6 months) [123]. Even patient-reported
symptoms that have not been classified as clinical re-
lapse before were accompanied by sNFL increase pro-
posing sNFL assessment to proof a relapse. Usually,
sNFL increased about 1 month prior to first clinical
symptoms with further increase and recovery over the
following 1 to 3 months. Monthly sNFLs presented at
higher values in patients with disease activity that re-
quired alemtuzumab retreatment compared to responder
patients.

C-X-C motif chemokine-13
The C-X-C motif chemokine-13 (CXCL13) is one of the
most potent B cell chemoattractants and is significantly
involved in the recruitment of B cells into the CNS in
MS. Consequently, increased levels of CXCL13 in the
CSF of MS patients could be measured compared to
healthy controls. In addition, a correlation of elevated
CXCL13 levels with disease activity was shown [126]. In
a study by Novakova and colleagues, patients with natali-
zumab therapy had lower CXCL13 values than patients
receiving IFN-β therapy [127]. Another study also ob-
served a reduction in CXCL13 levels after conversion
from IFN-β, glatiramer acetate, or teriflunomide to
fingolimod [128]. According to these results, CXCL13
could be a suitable biomarker for the efficacy of MS
therapies. At present, however, it is not yet used
clinically.

Molecular biomarkers for therapeutic side effects
In addition to clinical response, adverse events are a de-
cisive criterion for the success of a therapy. Molecular
biomarkers can be an important tool for predicting and
monitoring side effects.

Anti-varicella zoster virus antibodies
Antibodies against VZV are an established biomarker
for side effects of various RRMS therapies. Recently,
we have shown that the antibody level is in quite
good correlation with the more relevant cellular VZV
response which is difficult to quantify [129]. Due to
the altered immune response, the risk of herpetic in-
fections is increased with some immunomodulating
therapies [130–132]. To avoid VZV reactivation in
the course of therapy, the anti-VZV antibody titer
should be determined in serum before starting treat-
ment with fingolimod, alemtuzumab, and cladribine in
patients without previous chickenpox disease or vac-
cination [133, 134]. In the case of seronegative status,
vaccination should be carried out and the start of
therapy should be postponed by 4 to 6 weeks in
order to fully establish vaccination protection.
Prophylactic administration of antiherpetics is also
recommended for all patients who are treated with
alemtuzumab [133]. In cladribine therapy, herpes
prophylaxis should be considered if the lymphocyte
counts drop below 200/μl for the duration of grade 4
lymphopenia [135].

Anti-John Cunningham virus antibodies
Antibodies against the John Cunningham virus (JCV) are
detected in serum or plasma and represent a risk factor
for the development of progressive multifocal leukoence-
phalopathy (PML) during treatment with natalizumab.
The risk of PML is also increased by prior immunosup-
pressive therapy and the duration of natalizumab treat-
ment [136]. Anti-JCV antibody positive patients without
prior immunosuppressive therapy are additionally differ-
entiated according to the Anti-JCV antibody index
(equivalent to the strength of the ELISA reaction) for
PML risk assessment [137]. Accordingly, the risk of de-
veloping PML increases significantly in patients with an
index value > 1.5. Close monitoring and, if necessary, a
treatment switch are appropriate in this case. Thus, anti-
JCV antibodies are an established and important
biomarker in natalizumab therapy. Our risk estimates
calculated from patient-level clinical data allow individu-
alized annual prediction of risk of PML in patients re-
ceiving natalizumab for multiple sclerosis, supporting
yearly benefit–risk re-evaluation in clinical practice
[138]. However, they do not provide absolute certainty
in predicting PML and do not allow PML risk assess-
ment in other therapies.

L-selectin expression
L-selectin (CD62L) is an adhesion molecule on the cell
surface of lymphocytes. The proportion of CD62L-
expressing CD4+ T cells in peripheral mononuclear
blood cells is another biomarker candidate for the PML
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risk in natalizumab therapy [139]. Schwab and col-
leagues found, for example, a correlation of the CD62L
values with the JCV serostatus and the JCV index [140].
In addition, in this study with 17 pre-PML patients and
1410 control patients, a low CD62L proportion increased
the risk of developing PML by a factor of 55. However,
another study with 21 PML patients treated with natali-
zumab and 104 control group patients treated with nata-
lizumab showed no correlation between CD62L and
PML risk [141]. A further comprehensive validation is
necessary in this case in order to clarify the suitability of
CD62L as a biomarker for therapeutic side effects.

Conclusions
Molecular biomarkers enable individual decisions and
are an important step on the way to a personalized ther-
apy [3, 142]. An ideal biomarker is characterized by high
sensitivity and specificity as well as a simple, cost-
effective, reproducible, and non-invasive detection
method. At present, the diagnosis and prognosis of MS
as well as the monitoring of treatment response and the
assessment of the risk of side effects can be facilitated
with the help of some established biomarkers. These in-
clude oligoclonal bands and the IgG index, anti-AQP-4
antibodies, neutralizing antibodies against IFN-β and
natalizumab, as well as anti-JCV and anti-VZV anti-
bodies. In addition, there are promising biomarker can-
didates such as NFL and CHI3L that need to be
validated in further studies. However, long-term studies
in large cohorts are necessary to promote the application
of biomarker candidates in clinical practice. Despite
these initial successes, biomarkers that enable a reliable
prediction of the therapy response even before the start
of treatment and thus individualized therapy are still
lacking. There is therefore still a need to develop and
validate new biomarkers in the field of MS.
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