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Abstract

Background: The ability to distinguish resident microglia from infiltrating myeloid cells by flow cytometry-based surface
phenotyping is an important technique for examining age-related neuroinflammation. The most commonly used surface
markers for the identification of microglia include CD45 (low-intermediate expression), CD11b, Tmem119, and P2RY12.

Methods: In this study, we examined changes in expression levels of these putative microglia markers in in vivo animal
models of stroke, cerebral amyloid angiopathy (CAA), and aging as well as in an ex vivo LPS-induced inflammation model.

Results: We demonstrate that Tmem119 and P2RY12 expression is evident within both CD45int and CD45high myeloid
populations in models of stroke, CAA, and aging. Interestingly, LPS stimulation of FACS-sorted adult microglia suggested
that these brain-resident myeloid cells can upregulate CD45 and downregulate Tmem119 and P2RY12, making them
indistinguishable from peripherally derived myeloid populations. Importantly, our findings show that these changes in
the molecular signatures of microglia can occur without a contribution from the other brain-resident or peripherally
sourced immune cells.

Conclusion: We recommend future studies approach microglia identification by flow cytometry with caution,
particularly in the absence of the use of a combination of markers validated for the specific neuroinflammation model
of interest. The subpopulation of resident microglia residing within the “infiltrating myeloid” population, albeit small,
may be functionally important in maintaining immune vigilance in the brain thus should not be overlooked in
neuroimmunological studies.
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Introduction
Resident microglia (MG) and infiltrating myeloid cells play
a cooperative role in the initiation and resolution of inflam-
mation after central nervous system (CNS) injuries [1].
Until recently, the ability to distinguish MG from

infiltrating myeloid cells was constrained by the lack of cell-
specific surface markers [1]. Inevitably, methods to distin-
guish MG from other CNS myeloid populations relied on
morphological distinctions, generation of bone marrow chi-
meras, or relative expression of the common leukocyte
antigen, also known as cluster of differentiation 45 (CD45)
surface marker by flow cytometry [2–5]. CD45, a highly
conserved receptor protein tyrosine phosphatase [6, 7], is
used in various gating strategies to identify brain immune
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cell populations with flow cytometry and in single-cell
profiling experiments [8]. Intermediate expression levels of
CD45 combined with expression of CD11b
(“CD45intCD11b+”) is often used to distinguish MG from
peripherally sourced myeloid cells [5, 9–16]. However, this
approach has an inherent limitation as CD45 expression
itself may change in response to neuroinflammation in ex-
perimental models [17–19].
It has been suggested recently that MG possess a unique

transcriptional signature that can be used in parallel with,
or in lieu of, relative expression of CD45 for their reliable
identification [9, 20–24]. Two of these putative markers are
the trans-membrane protein 119 (Tmem119) and the puri-
nergic receptor P2Y12 (P2RY12). Tmem119 is a cell-
surface protein with unknown function in the brain [25],
and P2RY12 is a well-studied purinergic receptor [26, 27].
Importantly, however, these markers have not been thor-
oughly validated in various animal models of age-related
neuroinflammation [28, 29]. Additionally, downregulation
of both Tmem119 and P2RY12 surface proteins has been
recently demonstrated in experimental autoimmune en-
cephalomyelitis (EAE) models [26, 27, 30–32]. Emerging
evidence also supports the phenotypic plasticity of resident
and infiltrating myeloid cells under chronic inflammatory
conditions [33]. Quantifiable examination of Tmem119,
P2RY12, and relative CD45 expression levels in neuroin-
flammation can provide valuable insight into the intricate
relationship of brain-resident immune cells, infiltrating
populations, and their interaction with the blood-brain bar-
rier in neurological health and disease [30].
In this study, we hypothesized that a subpopulation of ac-

tivated MG can upregulate CD45 and may be found within
the CD45high gate, which is conventionally classified as infil-
trating myeloid cells [8, 14, 25, 31]. We tested our hypoth-
esis using a mouse model of acute ischemic stroke (a
surgical model) and CAA (a model of cerebrovascular de-
generation). Our lab has recently shown that aging, a com-
mon clinical risk factor for both stroke and CAA [14, 32],
independently alters the immunological response to stroke
[14]. We also examined the independent effect of aging on
the plasticity of CD45, Tmem119, and P2RY12 surface ex-
pressions within the brain myeloid compartment.
Our data show that the conventional gating strategy of

CD45int for MG vs. CD45high for infiltrating cells can ex-
clude a significant portion of Tmem119+P2RY12+ cells in
three in vivo mouse models of ischemic stroke, CAA, and
aging. Our ex vivo results demonstrate that CD45int cells
can indeed contribute to the CD45high population upon in-
flammatory stimuli without any peripheral immune contri-
bution. This suggests that CD45highTmem119+P2RY12+

population is a heterogeneous mixture of activated resident
and infiltrating myeloid cells. Importantly, this “hidden”
subpopulation of resident MG within the CD45highCD11b+

gate may contain a functionally distinct MG subset

compared to MG present within the conventional
CD45intCD11b+ gate. Our results may have implications for
understanding the role of activated MG versus infiltrating
myeloid populations such as macrophages, dendritic cells,
and monocyte-derived cells in neuroinflammation. This
study particularly highlights the potential limitation of using
relative expression of CD45 to identify activated MG in
pre-clinical models of cerebrovascular injuries.

Materials and methods
Mice
C57BL/6 male mice were obtained from the National In-
stitute on Aging (NIA). Young (2–4 months) and aged
(16–22 months) were used in this study. Transgenic
Swedish Dutch Iowa mice harboring the human APP
gene (isoform 770) with the Swedish (K670N/M671L),
Dutch (E693Q), and Iowa (D694N) mutations under
control of the mouse Thy1.2 promoter were used at a
pre-symptomatic time point of 1–3 months, and a peak
symptomatic time point of 12–15 months, here referred
to as “CAA” mice [28, 29, 33, 34]. Cognitive deficits
begin at 3–4 months of age in the Tg-SwDI mice, as de-
tected by Barnes maze [35–37]. All animals were group-
housed in Tecniplast individually ventilated cage (IVC)
racks, fed a commercially available irradiated, balanced
mouse diet (no. 5058, LabDiet, St Louis, MO), and pro-
vided corncob bedding. Rooms were maintained at 70–
73 °F and under a 12:12-h light:dark cycle. All animals
were maintained specific pathogen-free (see Supplemen-
tary Material for list of monitored pathogens). Animal
procedures were performed at an AAALAC accredited
facility and were approved by the Animal Welfare Com-
mittee at the University of Texas Health Science Center
at Houston, TX, USA.

Middle cerebral artery occlusion (MCAO)
Transient focal ischemia was induced under isoflurane
anesthesia in young mice (12–16 weeks) for 60 min by
occlusion of the right middle cerebral artery [38]. Body
temperature was maintained at 37.0 ± 1.0 °C throughout
the surgery by an automated temperature control feed-
back system (TC1000, mouse, CWE Inc., USA). A mid-
line ventral neck incision was made, and unilateral
MCAO was performed by inserting a Doccol monofila-
ment (Doccol Corp., Redlands, CA, USA) into the right
internal carotid. Cerebral blood flow (CBF) was mea-
sured by Laser Doppler flowmetry (Moor Instruments
Ltd., Devor, England). CBF was measured before ische-
mia, during ischemia, and at the time of reperfusion.
One hour after ischemia, animals were anesthetized
again and reperfusion was established by the withdrawal
of the monofilament. Animals were then placed in a re-
covery cage and were euthanized 72 h after reperfusion.
Sham controls were subjected to the same procedure
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without the introduction of the suture into the middle
cerebral artery. Animals were randomly assigned into
stroke and sham surgery groups and single-housed in
their recovery cages for the first 2 h after surgery. Sham
and stroke mice were then housed together in their
home cages to minimize the detrimental effects of social
isolation [39]. All mice were selected for sham or stroke
(MCAO) surgery in a randomized manner, and all ana-
lyses were performed blinded to surgical conditions.

Flow cytometry (brain and blood)
A previously published brain single-cell suspension proto-
col was used [14, 40]. In brief, mice were euthanized by
avertin injection. The blood was drawn by cardiac punc-
ture with heparinized needles. Red blood cell lysis was
achieved by two consecutive 10-min incubations with
Tris–ammonium chloride (Stem Cell Technologies). Mice
were transcardially perfused with a 20-ml cold, sterile PBS
prior to aseptic removal of brain tissues. The brain tissue
was placed in complete Roswell Park Memorial Institute
1640 (Lonza) medium and then mechanically and enzy-
matically digested in Collagenase/Dispase (1mg/mL) and
DNase (10mg/mL; Roche Diagnostics) for 45min at 37 °C
with gentle shaking (100 RPM). The cell suspension was
filtered through a 70-μm filter. Leukocytes were harvested
from the interphase of 70–30% Percoll gradients for the
brain tissue. Cells were washed and blocked with mouse
Fc Block (BioLegend, Lot: B298973) before staining with
primary antibody-conjugated fluorophores: CD45-eF450
(eBioscience, Cat#: 48-0451-82, Lot: 2005853), CD11b-
APC (BioLegend, Cat#: 101212, Lot: B279418), Ly6C-
PerCP-Cy5.5 (BioLegend, Cat#: 128011, Lot: 292026),
Tmem119-PE-Cy7 (eBioscience, Cat#: 25-6119-82, Lot:
2210260), P2RY12-PE (BioLegend, Cat#: 848003,
B298459), and MHCII-APC-Fire750 (BioLegend, Cat#:
107652, Lot: B301025) pre-conjugated antibodies and
Zombie Aqua (BioLegend, Cat#: 423102, Lot: B300004).
Cell isolation, Percoll gradient, and immunostaining steps
were carried out at once for both controls and injury
models to minimize experimental variabilities, i.e., all
sham and stroke samples were processed together, all pre-
CAA and CAA samples were processed together, and all
naïve young and aged samples were processed together.
Data were acquired on Cytoflex-S (Beckman Coulter) or
BD FACSMelody cytometers and analyzed using FlowJo
(Treestar Inc.). No less than 300,000 events were recorded
for each sample, and absolute cell counts have been in-
cluded in Supplementary Table 1. Tissue-matched fluores-
cence minus one (FMO) and unstained controls were
used to aid in the gating strategy (Supplementary Fig 1). t-
distributed stochastic neighbor embedding (tSNE) plots
were generated in FlowJo using DownSample plug-in
(3000 cells per sample for each study group) followed by
tSNE algorithm on all compensated parameters (except

viability) at 1000 iterations, perplexity of 30, learning rate
of 5040, and Barnes-Hut gradient algorithm.

Cell sorting
Single-cell suspension and surface staining were per-
formed as described above. After viability and single-cell
selections, MG, gated as CD11b+CD45int, were sorted
under a sterile hood from the single-cell suspension pre-
pared from naïve young male brains (full brains, n = 10)
using BD FACSMelody. Each sorted sample was then
split in half (by volume) into a pair of tubes (traced for
analysis) and either incubated with lipopolysaccharide
(LPS) or with control media for 12 h under a sterile cell-
culture environment. Cells were then extensively washed
with PBS, stained for surface markers and viability, and
analyzed by flow cytometry.

Ex vivo LPS treatments
Brain immune cell isolation was performed by optimized
enzymatic digested followed by Percoll gradient protocol
[14, 41]. For ex vivo studies, LPS (at 100 ng/mL concentra-
tion, from Escherichia coli O111:B4, purified by phenol ex-
traction, Millipore Sigma) was added to RPMI (containing
10% heat-inactivated fetal bovine serum, Sigma Aldrich,
Cat: 12106C, ≤ 10 EU/mL endotoxin) and incubated at the
sterile cell-culture environment at 37 °C for 12 h. The
brain tissue was harvested after cardiac perfusion with PBS
to eliminate the blood from the brain tissue. There is a
possibility that PBS-perfused samples contain some blood-
sourced immune cells prior to ex vivo LPS challenge.
Thus, we performed digestion and Percoll gradient-based
separation of microglia at which point, each individual
sample was split in half (by volume) into a pair of LPS-
treated and control. Splitting each individual brain sample
into a pair of LPS and control after digestion and gradient-
based isolation steps allowed us to verify that control tubes
had significantly lower CD45highCD11b+ cells when com-
pared to LPS-treated cells from the same brain after identi-
cal single-cell suspension preparation (see Fig. 4a, c for the
schematics).

Statistical analysis
Statistical analysis was performed using unpaired t test for
sham vs. MCAO (Fig. 1), pre-CAA vs. CAA (Fig. 2), and
young vs. aged (Fig. 3) brain flow cytometry data. Ex vivo
LPS experimental data from the contralateral hemisphere
of sham vs. MCAO brains (Fig. 4) were analyzed by a one-
way ANOVA with post hoc analysis with all related p
values adjusted by Sidak’s methods for multiple compari-
sons. Ex vivo LPS stimulation of sorted MG experimental
data was analyzed by Wilcoxon matched-pairs signed-
rank test because each pair of non-LPS vs. LPS was traced
throughout the experiment; thus, we were able to perform
a pair-wise analysis and represent the data accordingly
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Fig. 1 (See legend on next page.)
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(Fig. 5). The statistical significance was considered at p <
0.05 and *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001 convention was used in the presented figures. All
statistical analyses were performed with GraphPad Prism 7.

Results
The conventional infiltrating myeloid gate (CD45highCD11b+)
contains a mixture of resident and infiltrating immune cells in
acute ischemic stroke
Young male mice underwent a 60-min reversible MCAO
and were euthanized on post-stroke day 3. The examin-
ation of brain myeloid populations reveals that a sub-
population of Tmem119+P2RY12+ cells resides within
the CD45highCD11b+ gate (Fig. 1). Absolute numbers of
Tmem119+ cells and P2RY12+ cells were almost identi-
cal in individual samples, and we verified that all
Tmem119+ cells were indeed P2RY12+ (Supplementary
Fig 2); thus, statistical analyses were carried out based
on Tmem119+ counts as a proxy for
Tmem119+P2RY12+ counts. The brains from sham mice
did not show a significant population of
CD45highCD11b+ cells (Fig. 1a), while the brains from
MCAO mice had a significant CD45highCD11b+ popula-
tion (Fig. 1b). All CD45intCD11b+ cells in both sham
and stroke were Tmem119+P2RY12+ (Fig. 1a, b, bottom
panels). Interestingly, a significant subpopulation of
CD45highCD11b+ population was Tmem119+P2RY12+ in
stroke but not in sham brains (Fig. 1a, b, top panels).
Multi-dimensional analysis of flow cytometry data re-
vealed the heterogeneity of CD45high cells when compar-
ing sham and MCAO brains (Fig. 1c, d). Specifically, the
CD45high cluster in the MCAO tSNE plots (marked by a
black arrow in Fig. 1d) showed a uniformly high expres-
sion of CD11b while all other examined surface markers,
i.e., Tmem119, P2RY12, MHCII, and Ly6C showed sig-
nificant heterogeneity of expression levels (Fig. 1d). The
statistical analysis showed a significant increase in the
relative frequency of the CD45high subpopulation as a
percent of Tmem119+ cells after stroke which was asso-
ciated with a significant decrease in Tmem119 and

P2RY12 expressions (Fig. 1f–i). MHC-II surface expres-
sion of CD45highCD11b+Tmem119+P2RY12+ subpopula-
tion was significantly higher than
CD45intCD11b+Tmem119+P2RY12+ (Fig. 1j), suggest-
ing a higher activation state of these CD45high cells after
stroke [42, 43]. We then analyzed CD45highCD11b+ mye-
loid subpopulations that were double-negative or
double-positive for Tmem119 and P2RY12 for expres-
sion of Ly6C, a marker of bone marrow-derived cells
[44]. We found that CD45highCD11b+T-
mem119+P2RY12+ were predominantly Ly6C(-) while
CD45highCD11b+Tmem119(-)P2RY12(-) were predomin-
antly Ly6C+, suggesting their peripheral origin (Supple-
mentary Fig 2b). Confirmatory analysis of blood samples
from both sham and stroke mice did not show any sig-
nificant population of Tmem119+P2RY12+ cells (Supple-
mentary Fig 3). These findings highlight the
heterogeneity of the CD45highCD11b+ brain myeloid
population after stroke and suggest partial contributions
from both resident and peripherally sourced myeloid
cells, when examining Tmem119, P2RY12, and Ly6C
markers. Importantly, a small subpopulation of resident
MG that express both Tmem119 and P2RY12 may fall
within the CD45highCD11b+ gate that is functionally dis-
tinct after stroke when compared to the large subpopu-
lation of resident MG identified as CD45intCD11b+.

CD45highCD11b+ brain myeloid cells are predominantly
Tmem119+P2RY12+ in animal models of CAA
Next, we addressed whether CD45highCD11b+T-
mem119+P2RY12+ cells exist in transgenic mouse
models of cerebrovascular degeneration. To this end, we
used pre-symptomatic (1–3 months, “Pre-CAA”) and
symptomatic (12–15 months, “CAA”) Tg-SwDI mice,
which begin developing symptoms around 4months and
exhibit peak CAA symptoms at around 12months.
Examination of pre-symptomatic CAA mice showed that
the CD45highCD11b+ gate did not contain any significant
Tmem119+P2RY12+ cells (Fig. 2a, c), while in symptom-
atic CAA mice, the CD45highCD11b+ cells were

(See figure on previous page.)
Fig. 1 Examination of brain myeloid populations after a 60-min MCAO reveals a significant population of Tmem119+P2RY12+ cells with relatively
higher MHC-II expression resides within the CD45highCD11b+ gate. a Ipsilateral hemisphere from the sham brain (gated on live cells) myeloid
populations shows that nearly all CD45intCD11b+ cells are double-positive Tmem119+P2RY12+ while no significant subpopulation of
Tmem119+P2RY12+ cells resides within the CD45highCD11b+ gate. b Ipsilateral hemisphere from stroke brain shows that nearly all CD45intCD11b+ cells
are double-positive Tmem119+P2RY12+ and show a significant subpopulation of Tmem119+P2RY12+ cells within the CD45highCD11b+ gate. c tSNE
plots for the global examination of Live Tmem119+ pool in the sham brain. d tSNE plots for the global examination of Live Tmem119+ pool in the
ischemic brain. The black arrow shows the CD45high cluster which can be identified for other surface markers in MCAO tSNE plots. e Relative frequency
of CD45int population as a percentage of Live Tmem119+ cells is significantly lower after MCAO. f Relative frequency of CD45high population as a
percentage of Live Tmem119+ cells is significantly increased after MCAO. g Median fluorescence intensity (MFI) of CD45, as a measure of surface
expression, in Live Tmem119+ cells is significantly increased after MCAO. h Surface expression of Tmem119 in Live Tmem119+ cells is significantly
decreased after MCAO. i Surface expression of P2RY12 in Live Tmem119+ cells is significantly decreased after MCAO. j Surface expression of MHCII in
CD45int versus CD45high subpopulations of CD11b+Tmem119+P2RY12+ cells shows significantly higher MHCII expression in the CD45high

subpopulation after MCAO. (n = 4/gp, unpaired student t test, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Examination of brain myeloid populations in pre-symptomatic Tg-SwDI (“Pre-CAA”) versus symptomatic Tg-SwDI (“CAA”) reveals that the
CD45highCD11b+cells are predominantly Tmem119+P2RY12+. a Pre-CAA brain (gated on live cells) myeloid populations show that nearly all
CD11b+CD45int cells are double-positive Tmem119+P2RY12+ while no subpopulation of Tmem119+P2RY12+ cells resides within the
CD11b+CD45high gate. b CAA brain myeloid populations show that nearly all CD11b+ CD45int cells are double-positive Tmem119+P2RY12+ and
show a significant subpopulation of Tmem119+P2RY12+ cells within the CD11b+CD45high gate. c tSNE plots for the global examination of
Live Tmem119+ pool in Pre-CAA brain. d tSNE plots for the global examination of Live Tmem119+ pool in the CAA brain. e Relative frequency of
CD45int population as a percentage of Live Tmem119+ cells is significantly lower in CAA. f Relative frequency of CD45high population as a
percentage of Live Tmem119+ cells is significantly higher in CAA. g Median fluorescence intensity (MFI) of CD45, as a measure of surface
expression, in Live Tmem119+ cells is significantly higher in CAA. h Surface expression of Tmem119 in Live Tmem119+ cells is significantly lower
in CAA. i Surface expression of P2RY12 in Live Tmem119+ cells is significantly lower in CAA. j Surface expression of MHCII in Live Tmem119+ cells
is significantly higher in CAA. (n = 4/gp, unpaired student t test, ***p < 0.001, ****p < 0.0001)

Fig. 3 Examination of brain myeloid populations in young (2–4 months) and aged (16–22 months) naïve brains shows a significant increase in
CD45 (a), decrease in Tmem119 (b), and decrease in P2RY12 (c) expressions with aging in Live Tmem119+ cells. (n = 4/gp, unpaired student t
test, *p < 0.05, ****p < 0.0001)
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Fig. 4 (See legend on next page.)
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predominantly Tmem119+P2RY12+ (Fig. 2b, d). Examin-
ation of Tmem119+ cells in CAA compared to pre-CAA
brain showed that both the relative frequency of
CD45high cells and surface expression of CD45 signifi-
cantly increased in the CAA brain (Fig. 2e-g), which was
associated with a significant decrease in Tmem119 and
P2RY12 and a significant increase in MHC-II expression
(Fig. 2h–j). Consistent with previous reports using RNA
sequencing [45], our flow cytometric comparison of
young and aged naïve brain showed that CD45 expres-
sion by Tmem119+ cells significantly increased with

aging and is associated with a significant decrease in
Tmem119 and P2RY12 surface protein expressions
(Fig. 3c–e).

Ex vivo LPS treatment induces similar phenotypic changes
in FACS-sorted MG
Ex vivo LPS-induced inflammation models were used to
determine whether CD45intCD11b+Tmem119+P2RY12+

cells from the brain can upregulate their CD45 expres-
sion, independently of contributions from the peripheral
immune system. Brain immune cell isolation was

(See figure on previous page.)
Fig. 4 Ex vivo LPS-induced inflammation of brain immune cells shows increased CD45 expression within LiveTmem119+ cells. The post-Percoll
brain cells from the same naïve young brain hemispheres were incubated with or without LPS at 37C for 3 h prior to staining and flow cytometric
analysis (a). Examination of Live Tmem119+ cells from naïve young brain shows that ex vivo LPS-induced inflammation leads to a significant
upregulation of CD45 expression (b). To determine whether stroke will reduce the ability of brain immune cells to upregulate their CD45
expression without any peripheral contribution of the infiltrating immune cells, ex vivo LPS-induced inflammation studies were carried out using
contralateral hemispheres of sham and MCAO brains (c–l). No significant population of CD11b+CD45high cells was present in the young sham
brain without LPS treatment (d), but a significant population of CD11b+CD45high is found in the young sham contralateral brain with LPS
treatment (e). Results show a significant increase in CD11b+CD45high population when comparing LPS-treated post-Percoll brain cells with
untreated cells from the same contralateral hemisphere of stroke brains (“Contra-MCAO”, f, g). The analysis shows a significant upregulation of
CD45 expression with LPS stimulation in both sham and MCAO assays (j). (n = 4/gp, a one-way ANOVA with Sidak’s multiple comparisons test, *p
< 0.05, **p < 0.01, ***p < 0.001)

Fig. 5 Ex vivo LPS stimulation of sorted MG (identified as CD45intCD11b+ in naïve young brain) increases CD45 and decreases P2RY12 and
Tmem119 surface expressions. Gating strategy used for sorting Live CD45intCD11b+cells for 12-h ex vivo LPS stimulation (a). CD45 expression on
sorted MG significantly increases after ex vivo LPS stimulation for 12 h (b). P2RY12 and Tmem119 expressions on sorted MG significantly decrease
after ex vivo LPS stimulation for 12 h (c, d). (n = 10/gp, Wilcoxon matched-pairs signed-rank test (non-parametric t test), **p < 0.01)
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performed by optimized enzymatic digestion followed by
Percoll gradient protocol (Fig. 4a) [14, 41]. After the Per-
coll gradient step for myelin removal, the post-Percoll
brain cells from the same brain hemispheres were incu-
bated with or without LPS for 3 h prior to surface
marker staining and analysis by flow cytometry (Fig. 4a,
c). Examination of Tmem119+ cells from naïve young
brain showed that ex vivo LPS-induced inflammation led
to a significant upregulation of CD45 expression
(Fig. 4b). To determine if stroke could affect the ability
of CD45intTmem119+P2RY12+ cells to upregulate their
CD45 expression without any peripheral contribution of
the infiltrating immune cells, ex vivo LPS-induced in-
flammation studies were carried out using the contralat-
eral hemispheres of sham and MCAO young brains
(Fig. 4c–l). Data showed that regardless of a stroke sta-
tus, post-Percoll brain Tmem119+ cells acutely upregu-
late expression of CD45 in response to an inflammatory
LPS stimulus (Fig. 4e, j). Minimal CD45highCD11b+ cells
were present in the sham brain without LPS treatment
while a significant population of CD45highCD11b+ was
found in the sham brain after ex vivo LPS treatment
(Fig. 4e, f). Furthermore, these post-LPS
CD45highCD11b+ cells contain a mixed population of
Tmem119+P2RY12+ and Tmem119(-)P2RY12(-) cells
(Fig. 4e). Results showed that cells from the same
contralateral hemisphere from stroke mice had a signifi-
cant increase in the CD45highCD11b+ population when
treated with ex vivo LPS (Fig. 4f, g). Analysis demon-
strated a significant upregulation of CD45 expression
with LPS stimulation in both sham and MCAO assays
(Fig. 4j). These results showed that CD45int MG can in-
deed upregulate expression of CD45. However, the
treated samples used in these experiments contained
other non-MG CNS cells. Next, we asked whether the
in vivo and ex vivo post-LPS increase in CD45 expres-
sion by MG is dependent on other CNS cells. To exam-
ine this, MG were sorted from naïve young brain; then,
each sample was split in half (by volume) before
incubation with either LPS or control media for 12 h
(Fig. 5a). Consistently, post-LPS analysis of sorted MG
showed a significant increase in CD45 expression by
MG, which was also associated with significant downreg-
ulation of Tmem119 and P2RY12 surface expression
(Fig. 5b–d).
Taken together, our data show that resident CD45intT-

mem119+P2RY12+ cells are capable of upregulating their
CD45 while downregulating Tmem119 and P2RY12
expression in neuroinflammatory conditions such as stroke,
CAA, or aging and may reside within the CD45highCD11b+

gate, conventionally designated as “infiltrating myeloid
cells.” Importantly, the CD45high subpopulation of MG
within the CD45highCD11b+ gate, albeit small, may be func-
tionally more important in maintaining immune vigilance

in the brain, as suggested by higher MHC-II expression
levels [42, 43]. Recent studies have also shown that the
presence of this small CD45high MG may persist until
post-stroke day 14 [16].

Discussion
Prior to recent evidence suggesting that MG can be reliably
identified using MG-specific surface markers [9, 20–23],
relative expression of the CD45 surface marker by flow cy-
tometry was among the few available methods to distin-
guish MG from infiltrating myeloid cells [2–4]. However,
this approach is inherently limited by the changes in CD45
expression in the context of specific CNS pathologies,
which has been reported by our lab and others [5, 46, 47].
In this study, we used Tmem119 and P2RY12 along with
a conventional combination of CD45, CD11b, and Ly6C
myeloid markers in models of stroke, CAA, and aging to
determine whether Tmem119+P2RY12+ cells appear
within the CD45highCD11b+ gate, often referred to as
the “infiltrating myeloid” gate. Further, we demonstrated
that CD45intTmem119+P2RY12+ can upregulate CD45
and downregulate Tmem119 and P2RY12 expression in
response to an inflammatory stimulus even without any
direct contributions from the peripheral immune system
or other CNS cells.
Our data suggest that microglia continuously sense the

environment and actively respond to both acute and
chronic brain injuries by altering their surface molecular
signatures. Specifically, brain resident CD45intCD11b+T-
mem119+P2RY12+ cells can alter their surface expres-
sion patterns after stroke, in symptomatic CAA, or with
aging and can appear in the CD45high gate in flow cy-
tometry studies. Although Tmem119 and P2RY12 are
well-characterized microglia markers, our data does not
rule out the possibility that peripherally sourced myeloid
cells may possess the capacity to express Tmem119 and
P2RY12 when in the CNS environment and thus appear
as CD45highCD11b+Tmem119+P2RY12+ cells. In fact, re-
cent evidence suggests that Tmem119+ MG-like cells
can be found in the brain based on ontogeny and under
the influence of CNS milieu [48]. Others have found that
peripheral macrophages express Tmem119 and P2RY12
during development [49]. Consistent with recent studies
in pre-clinical models of Alzheimer’s disease (AD)
and EAE [48, 50–52], we also report both Tmem119 and
P2RY12 expression are decreased after acute ischemic
stroke, after the development of symptoms in CAA
models, and in ex vivo models of inflammation for
sorted MG. Expression of Ly6C, a marker of bone
marrow-derived myeloid cells (similar to CCR 2[44]),
showed that the majority of CD45high myeloid cells that
were double negative for Tmem119 and P2RY12 were
indeed Ly6C+, suggesting their peripheral origin. Con-
versely, the majority of Tmem119 and P2RY12 double-
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positive cells in the CD45high gate were Ly6C(-), suggest-
ing their brain-resident origin. Intriguingly, a small per-
centage of CD45highTmem119+P2RY12+ were also
Ly6C+, supporting other recent studies [48, 49] that per-
ipherally sourced myeloid cells may possess the capacity
to express Tmem119 and P2RY12 as well as the ability
to downregulate Ly6C, making them less distinguishable
from the brain-resident cells. These findings are
consistent with evidence that bone marrow-derived
monocytes may downregulate their Ly6C expression and
establish a long-term presence in the injured brain [53].
We also reported that no significant population of
Tmem119+P2RY12+ cells are present in the peripheral
blood of sham or MCAO mice 3 days after stroke. This
data supports our hypothesis; however, it does not elim-
inate the possibility that blood-sourced myeloid cells
may enter the brain earlier during the injury and start
expressing some level of Tmem119 or P2RY12 under
the influence of the CNS milieu. Future experiments that
include the analyses of the brain tissue, blood, and brain
lymphatic samples after a stroke at multiple time points
will be of great value in clarifying potential sources of
Tmem119+P2RY12+ cells following ischemia.
Our findings may have implications in previous re-

ports focused on the roles of activated MG versus in-
filtrating non-microglia myeloid cell populations [5,
9–13, 54–56] and highlight the diversity of brain
myeloid compartment in neuroinflammation [57]. Fu-
ture studies utilizing bone marrow chimeras and
Tmem119 or P2RY12 deletion in MG can elucidate
the mechanistic effects of changes in MG surface
markers in neuroinflammation.

Conclusion In conclusion, we recommend that future
studies should approach the identification of MG by
flow cytometry with caution, particularly in the absence
of a combination of markers validated for the specific
neuroinflammation model of interest.
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