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Abstract

Background: Microglia are resident innate immune cells in the brain, and activation of these myeloid cells results
in secretion of a variety of pro-inflammatory molecules, leading to the development of neurodegenerative
disorders. Lipopolysaccharide (LPS) is a widely used experimental stimulant in microglia activation. We have
previously shown that LPS produced microglia activation and evoked detectable functional abnormalities in rat
corpus callosum (CC) in vitro. Here, we further validated the effects of low-dose LPS-induced microglia activation
and resultant white matter abnormality in the CC in an animal model and examined its attenuation by an anti-
inflammatory agent minocycline.

Methods: Twenty-four SD rats were divided randomly into three groups and intra-peritoneally injected daily with
saline, LPS, and LPS + minocycline, respectively. All animals were subject to MRI tests 6 days post-injection. The
animals were then sacrificed to harvest the CC tissues for electrophysiology, western blotting, and
immunocytochemistry. One-way ANOVA with Tukey's post-test of all pair of columns was employed statistical
analyses.

Results: Systemic administration of LPS produced microglial activation in the CC as illustrated by Iba-1
immunofluorescent staining. We observed that a large number of Iba-1-positive microglial cells were hyper-ramified
with hypertrophic somata or even amoeba like in the LPS-treated animals, and such changes were significantly
reduced by co-administration of minocycline. Electrophysiological recordings of axonal compound action potential
(CAP) in the brain slices contained the CC revealed an impairment on the CC functionality as detected by a reduction
in CAP magnitude. Such an impairment was supported by a reduction of fast axonal transportation evidenced by 3-
amyloid precursor protein accumulation. These alterations were attenuated by minocycline, demonstrating
minocycline reduction of microglia-mediated interruption of white matter integrity and function in the CC.

Conclusions: Systemic administration of LPS produced microglia activation in the CC and resultant functional
abnormalities that were attenuated by an anti-inflammatory agent minocycline.
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Background

Microglia are resident innate immune cells in the central
nervous system (CNS) [1, 2] and have diverse functions
in the brain under normal and disease conditions. They
are involved in the immunity, neurogenesis, synaptogen-
esis, neurotrophic support, removal of cellular/tissue
debris, and maintaining CNS homeostasis [3]. Microglia
appear as ramified cells in the resting condition and
change their shape to an amoeboidic form once acti-
vated. Ample evidence indicate that microglia are one of
the major cell types involved in the inflammatory re-
sponses in the CNS. The activated microglia release a
variety of pro-inflammatory molecules including, but not
limited to, chemokines, cytokines, cyclooxygenase-2, in-
ducible nitric oxide synthase, and nitric oxide. These
substances provoke inflammatory responses and brain
tissue damage that contribute to the pathogenesis of
neurodegenerative  disorders including Alzheimer’s
disease [4—8], Parkinson’s disease [9, 10], and human
immunodeficiency virus type 1(HIV-1)-associated neuro-
cognitive disorders [11, 12].

Many bioactive substances and factors can induce
microglial cell activation. Lipopolysaccharide (LPS, a
bacterial endotoxin) is the most commonly used pro-
inflammatory stimulus for microglia both in vitro and
in vivo. It is well-established that LPS-associated neuro-
pathology stems from the microglia activation and
resultant release of cytokines and inflammatory media-
tors [13—16]. We have previously shown that LPS, at low
doses, produced microglia activation in rat corpus callo-
sum (CC) in vitro and evoked detectable functional
abnormalities on white matter tracts in the absence of
overt axonal injury, hypoxia, and trauma that could be
detrimental to the white matter [17]. Those findings
imply that suppression of microglia activation in the CC
by anti-inflammatory reagents may have a therapeutic
benefit in protecting white matter tracts from inflamma-
tory assault.

Ample evidence indicate that minocycline (7-dimethyla-
mino-6-dimethyl-6-deoxytetracycline), a second-generation
semisynthetic tetracycline analog, has a neuroprotective
capacity in various animal studies. It is a highly lipophilic
molecule that can easily penetrate the blood-brain barrier
[18], thus promoting its accumulation in the CNS and
enabling its use in the treatment of neurodegenerative
diseases [19, 20]. Furthermore, there is rapidly growing
evidence indicating that minocycline may exert its neuro-
protective activity through suppression of microglial activa-
tion [21], inhibition of neuroinflammatory response, and
attenuation of neuronal apoptosis [22-24]. These actions
appear significantly different from their antibiotic proper-
ties. Indeed, minocycline attenuated brain white matter in-
juries induced by intracerebral hemorrhage or cerebral
ischemia through its anti-inflammatory activity [25-27]. In

Page 2 of 11

the present study, we attempted to validate the effects of
LPS on microglia activation and consequent brain white
matter abnormality observed previously in an in vitro prep-
aration in an in vivo system and examined the protective ef-
fects of minocycline on the rat CC abnormalities induced
by low-lose LPS. Our results showed that systemic adminis-
tration of LPS produced microglial activation in the CC
and impaired CC functionality as revealed by reduction of
axonal compound action potential (CAP) magnitude and
fast axonal transportation evidenced by B-amyloid precur-
sor protein (B-APP) accumulation. These alterations were
attenuated by minocycline, demonstrating minocycline re-
duction of microglia-mediated interruption of white matter
functionality in the CC of rats.

Materials and methods

Animals

Twenty-four adult Sprague-Dawley rats (40-50 days old;
12 male and 12 female) were used, and they were di-
vided into 3 groups, each with 4 male and 4 female
animals. Group 1 received sterilized saline injection as a
control (saline group), LPS was injected to group 2 rats
(LPS group), and the third group received both LPS and
minocycline injection (LPS + minocycline). All experi-
mental protocols and animal care were carried out in
accordance with the National Institutes of Health Guide
for the Care of Laboratory Animals in Research and
approved by the Institutional Animal Care and Use
Committee of the University of Nebraska Medical Cen-
ter. All efforts were made to minimize animal suffering
and the number of animals used in this study.

Intraperitoneal injection of saline, LPS, and LPS +
minocycline

LPS (Escherichia coli, 12880, Sigma, St. Louise, MO) was
prepared with saline at 1 mg/ml and stored at — 20 °C.
Minocycline hydrochloride (M9511, Sigma) was dis-
solved in saline at 25 mg/ml shortly before administra-
tion. LPS of 1 mg/kg was intra-peritoneally (i.p.) injected
daily in the LPS group animals, and animals in the saline
group received equivalent volume of saline daily for
three consecutive days. In the LPS + minocycline group,
minocycline of 25 mg/kg was i.p. administrated daily 2 h
before LPS injection for four consecutive days.

Magnetic resonance imaging

All animals in three groups received MRI tests at the 6th
day after the initial injection. The MRI tests were per-
formed on a 7T/21-cm MR scanner (Bruker, Karlshure,
Germany) equipped with Resonance Research (Billerica,
MA) gradients and shims. Animals were anesthetized
with a 2% isoflurane/oxygen mixture, and body tempera-
tures were kept constant at 37 °C with a MRI-
compatible heater (SAII, NY). T,-weighted anatomical
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images were acquired from 16 contiguous coronal slices
with a rapid acquisition with relaxation enhancement se-
quence. For each animal, an average diffusion-weighted
image volume including fractional anisotropy (FA) and
mean diffusivity (MD) was reconstructed. To measure
the diffusion indices quantitatively, regions-of-interest
(ROIs; Fig. 1a, red and green frames) were drawn manu-
ally from the raw FA maps of each rat. The average FA
and MD values from measurement in the ROIs were cal-
culated and compared among the saline, LPS, and LPS +
minocycline injection groups. In addition, the FA and
MD values of 4 male and 4 female rats from the same
group were statistically compared in each group.

Preparation of CC slices and electrophysiology

On the day immediately after MRI tests, six animals (3
males/3 females) from each group were deeply anesthe-
tized with isoflurane and then decapitated. The brains
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were quickly dissected out of the cranial cavities, placed
into an ice-cold (4 °C) oxygenated artificial cerebrospinal
fluid (ACSF), and cut into 500-um (in thickness) slices
as previously described [28]. Every other slice was used
to perform extraction of protein for western blot. In
addition, two slices containing the rostral and middle
parts of the CC body, respectively, were directly trans-
ferred into 4% paraformaldehyde in 1x phosphate-
buffered saline (PBS, pH 7.4) to be fixed for immuno-
fluorescent staining. The remaining slices were used for
electrophysiology recordings. The CC fiber CAPs were
evoked by constant current (0.1-0.5 mA, 40 ps in
duration, 0.2 Hz) via a bipolar tungsten stimulating elec-
trode. The recording electrodes, made from borosilicate
glass capillaries (1.5/0.84 OD/ID, WPI, Sarasota, FL) and
filled with 2 M NaCl (impedance 1-4 MQ), were placed
1-1.5 mm away from the stimulating site. Signals were
amplified through an Axopatch 1D amplifier (Molecular
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Fig. 1 Interruption of white matter linear integrity by system LPS, obviously reversed by minocycline. a FA and MD values were measured and
analyzed on the regions of interest in the rostral (red frame) and middle (green frame) parts of the CC body. b The FA values, namely linear
movements of water molecules paralleling with the axons, were significantly distorted by system LPS (N = 8 in both saline and LPS groups; p <
0.05, shown as *), while minocycline reversed this distortion to an approximately significant level (N = 8 in both LPS and LPS + minocycline
groups; p = 0.0657). ¢ The MD values, namely water diffusion with angles to the axons, were enhanced to an almost significant level comparing
to the saline group (p = 0.0570); however, co-delivery of minocycline seemed to invert this effect

LPS Injection

C 800;

= p =0.0570

Nﬁ 600 - T

E 41T

= 400{ —— T

= 1

>

£ 200 -

[ -

o

= 0
@ S O
KL * &
%'b \/Q% 00\\



http://topics.sciencedirect.com/topics/page/Fractional_anisotropy

Zhang et al. Journal of Neuroinflammation (2021) 18:100

Devices, San Jose, CA) and a Dagan EX4-400 amplifier
(Dagan Corp., Minneapolis, MN), filtered at 1 kHz, digi-
tized at 5 kHz with Digidata 1440A interface (Molecular
Devices), and recorded on a Dell computer with the
pCLAMP 10.1 software (Molecular Devices).

Western blot

The CC white matter tissues were dissected from the other
half of the slices mentioned above in cold ACSF under an
anatomic microscope. Then, the CC tissue was quickly
transferred into Tissue Extraction Reagent 1 (FNNO0O071,
Invitrogen, Camarillo, CA) with 1:1000 protease inhibitor
(P-2714, Sigma) and homogenized. Protein concentration
was measured by bicinchoninic acid assay (BCA assay).
Routine electrophoresis was carried out using 10% sodium
dodecyl sulfate-polyamide gel. Polyclonal rabbit anti-B-APP
(1:600; AB5302, Millipore, Temecula, CA), monoclonal
mouse anti-inducible nitric oxide synthase (iINOS; 1:500;
AB49999, Abcam, Cambridge, MA), and rabbit anti-tumor
necrosis factor alpha (TNF-o; 1:1000; AB66579, Abcam)
were used to identify B-APP, iNOS, and TNF-a. Mouse
anti-B-actin (1:10000; Sigma, A2228) was applied as a gel
loading control. Immunoreactivity bands were detected
using enhanced chemiluminescence and developed with
autoradiography film.

Immunocytochemistry

1 Immunofluorescent staining

A total of 6 rats, two (a male and a female) from each
group, were euthanized with isoflurane and transcardially
perfused with saline followed by 4% paraformaldehyde in
1x PBS. The brains were removed and cryo-protected by
gradient sucrose. Similarly, the two freshly fixed CC slices
mentioned above underwent cryo-protection as well.
Then, the coronal sections were cut at 10 um thickness
and mounted on slides immediately. About 10% of sec-
tions containing CC were selected to conduct immuno-
fluorescent staining and intensity analysis. The sections
were immunoblocked routinely and incubated with rabbit
anti-ionizing calcium-binding adaptor protein-1 (Iba-1; 1:
300; Wako Chemicals USA Inc., Richmond, VA), mono-
clonal rat anti-myelin basic protein (MBP; 1:200; Abcam),
and polyclonal rabbit anti-neurofilament (NF; 1:400;
Millipore) at room temperature overnight. Alexa Fluor
488-conjugated anti-rabbit antibodies (1:500; Molecular
Probes, CA) were wused for immunofluorescent
visualization of microglia and nerve fibers. The control
sections were stained in the same way without primary
antibody.

2 Proportional area and immunostaining intensity
measurements

Microimages for proportional area measurement were
acquired through a x20 lens, and measurement was
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performed by using SlideBook (6.0.10; Intelligent Im-
aging Innovations Inc., Denver, CO). Iba-1 labeling was
masked as the selected area at first, and the whole CC
area in the scope field, excluding the area of lateral ven-
tricle if any, was masked as the measured area that will
be a denominator. Immunofluorescence intensity of
MBP and NF was also collected and quantified using
SlideBook. Likewise, images were acquired through a
%20 lens, the positive MBP or NF labeling was masked
and the intensity was scaled, and the measured whole
nerve bundle was masked as a denominator; then, those
values were statistically analyzed and compared.

Statistical analysis

FA and MD values were processed with one-way
ANOVA with Tukey’s post-test of all pair of columns.
One-way ANOVA analysis of the area under the curve
(AUC), with Tukey’s post-test of all pair of columns, was
used to test the differences between input-output (I/O)
curves of CAPs recorded from the aforementioned three
groups. Proportional area for Iba-1 staining, MBP, or NF
immunoreactivity intensities and protein density of p-
APP, iNOS, and TNF-a from the aforementioned three
groups were also statistically compared with one-way
ANOVA with Tukey’s post-test of all pair of columns.
Statistics were processed by using GraphPad Prism 5
(GraphPad Software Inc., La Jolla, CA), and the signifi-
cance level was indicated as p < 0.05 and p < 0.01, repre-
sented by “*” and “**” respectively.

Results

Disturbance of white matter linear integrity by LPS,
partially rescued by minocycline

The measurement and analysis were focused on the ros-
tral and middle CC regions, and fractional anisotropy
was measured through the map (Fig. 1a), while the mean
diffusivity was calculated by using the measured 1; and
At parameters. FA reflects linear movements of water
molecules, and MD, on the contrary, suggests a free
diffusion of water and the extent of freedom [29].
Comparison between the saline, LPS, and LPS + minocy-
cline groups by one-way ANOVA showed that water
linear movement was significantly distorted (Fig. 1b; p <
0.05) by system LPS, and minocycline could reverse this
distortion to an approximately significant level (p =
0.0657). ANOVA comparison of MD between the saline,
LPS, and LPS + minocycline groups exhibited that LPS
injection enhanced water diffusion almost to a signifi-
cant level comparing to the saline injection did (Fig.
1c; p = 0.0570), while pre-delivery of minocycline ap-
peared to attenuate this effect (Fig. 1c). In addition, a
comparison of FA and MD values between male and
female rats within the same group, namely in the
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saline, LPS, and LPS + minocycline groups, showed
no evident difference.

Declination of CC nerve fibers CAP by LPS, significantly
inverted by minocycline

CAPs were recorded in response to increment increase
of stimulating intensities, and their amplitudes were
measured and plotted as corresponding input-output (I/
O) curve (Fig. 2). One-way ANOVA analysis of AUC
displayed delivery of LPS highly significantly down-
shifted I/O curve versus the saline group (Fig. 2a; p <
0.01). This result suggests a functional impairment of
white matter tract following system LPS. In addition,
ANOVA statistical comparison of AUC values from the
LPS group with that of the LPS + minocycline group
showed minocycline significantly reversed the adverse
effect of LPS on CAP (Fig. 2b; p < 0.05), reflecting pro-
tection of minocycline for white matter function against
LPS-induced impairment.

Minocycline reversed high densities of iNOS and TNF-a
induced by LPS

Protein densities of B-APP, iNOS, TNF-qa, and p-actin
were measured and normalized by corresponding f-
actin level in each sample. The densities of B-APP and
iNOS in CC tissues of the LPS injection group were sig-
nificantly enhanced compared to that in the saline group
(Fig. 3a, b; p < 0.01). The TNF-a level was significantly
higher in the LPS group than in the saline group (Fig.
3c). In contrast, co-injection with minocycline signifi-
cantly reversed the LPS evoked iNOS and TNF-a upreg-
ulation (Fig. 3b, ¢, p < 0.05), but not p-APP
accumulation in the CC (Fig. 3a). Nonetheless, the im-
pairment on fast axon transportation was ameliorated by
co-delivery of minocycline.

LPS activation of microglia and its attenuation by
minocycline

Resting microglia with thin somata and delicate pseudo-
podia were observed in the CC of the saline group as re-
vealed by Iba-1 immunofluorescent staining (Fig. 4a and
inset). A large number of Iba-1-positive microglia were
hyper-ramified with hypertrophic somata or even
amoeba like (Fig. 4b and inset) in the LPS group. When
minocycline was co-administrated with LPS, microglia
with amoeba-like appearance became much fewer, and
hypertrophic pseudopodia and/or mild hypertrophic
soma were also observed (Fig. 4c and inset). Proportional
area values [30] were calculated by normalizing the se-
lected area with the whole measured area. ANOVA ana-
lysis indicated a highly significant morphological change
evoked by system LPS compared to that from the saline
group (Fig. 4d; p < 0.01). Such morphological changes
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were significantly attenuated by co-administration of
minocycline (Fig. 4d; p < 0.05).

Activation of microglia on white matter fiber integrity
Densities of MBP and NF reflect white matter tract
integrity. The MBP primarily signifies myelinated nerve
fibers, and the NF reflects the integrity of both myelin-
ated and unmyelinated fibers [31, 32]. To examine if in-
jection of LPS injures white matter fibers, we measured
the intensity of immunofluorescence that labels MBP
(Fig. 5a—c) and NF (Fig.5e—g), digitized their densities,
and then normalized by the whole area of measured
nerve fibers in the CC. Statistical analyses showed no
significant difference between the saline, LPS, and LPS +
minocycline groups (Fig. 5d, h), indicating no significant
damage on myelinated nerve fibers after administration
of LPS. However, the intensity of NF labeling in the LPS
group did exhibit a somewhat decrease which was re-
versed by minocycline (Fig. 5h), implying some adverse
effect of microglia activation on NF transportation and
assembly.

Discussion

Using LPS to induce microglia activation ex vivo, we
have previously demonstrated that conditioned microglia
activation in rat CC resulted in white matter tract mal-
function as illustrated by a reduction of CAP magnitude
and an impairment of fast axon transport reflected by
accumulation of B-APP [17]. The extent of microglia ac-
tivation was correlated to the alterations of CAP and fast
axon transport of B-APP. Based on our previous experi-
mental results [17] and the findings by others [33, 34],
we further investigated and validated, using an in vivo
semi-quantification test, the extent of white matter tract
abnormalities with the states of microglia activation, fo-
cusing on the CC region. We also examined whether the
LPS-associated white matter tract abnormalities can be
ameliorated or blocked by an anti-inflammatory agent
minocycline. Our results showed that microglia activa-
tion induced by systemic administration of LPS-
produced white matter tract malfunction in the CC and
minocycline, a semisynthetic tetracycline derivative, at-
tenuated LPS-induced microglia activation and resultant
white matter abnormalities in the CC.

Increasing evidence indicate that neuroinflammation
provoked by microglia activation plays an important role
in the pathogenesis of neurological disorders [6—12].
Using LPS to mimic an etiological factor to induce
microglial activation in many neurological disorders is
widely used in animal studies [35-37]. It has been shown
that LPS at a dose of 1 mg/kg/day through i.p. delivery
was not possible to impair the blood-brain barrier and
enter the brain freely [35, 36]. In contrast, three con-
secutive deliveries were able to effectively activate
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microglia, and full activation was observed at the
third day after systemic delivery [33, 34]. Using a 3-
day delivery protocol, we did observe microglia activa-
tion and functional impairment in the CC. Our
results were in a full agreement with those observa-
tions made by others [33, 34].

In a recent study, the authors reported that systemic
delivery of LPS for 3 days resulted in a significant mal-
function of the hippocampus and the CC nerve fibers

with robust microglia activation in both brain regions
[33]. Three days post-LPS delivery, hippocampal func-
tion largely recovered with a reduced microglia activa-
tion, while the CC nerve fibers malfunction exacerbated
[33]. Their results were in consistent with a prior report
that activation of microglia was detected 8-24 h after
systemic LPS delivery, and explicit morphological change
was visualized at the 3rd day following 1 or 2.5 mg/kg
LPS injection [34]. Noteworthy, comparison of microglia
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Fig. 3 System LPS induced increment of 3-APP, iINOS, and TNF-q, and minocycline inhibited their protein upgrading. a Accumulation of 3-APP in
the CC tissue reflected by a highly significantly higher level of protein in the LPS group than in the saline group (N = 4; p < 0.01, shown as **).
Minocycline evidently reversed this accumulation but did not reach a significant level. b iNOS density in the CC of LPS group was highly
significantly enhanced compared to that in the saline group (N = 4; p < 0.01, shown as *¥); also, minocycline significantly reversed high level of
iNOS evoked by system LPS (N = 4; p < 0.05, shown as *). ¢ Similarly, the CC TNF-a level in the LPS group was significantly higher than that in
saline cases (N = 4; p < 0.05, shown as *); while minocycline significantly inhibited TNF-a upgrading (N = 4; p < 0.05, shown as *)

activation levels in the CC with that in the hippocampus
at that time point showed significantly higher in the CC
than that in the hippocampus [33].

In the present work, we adopted a similar procedure
to evoke microglia activation as employed by other re-
searchers [33, 34] and examined potential alterations on
white matter integrity and function in the CC. We ob-
served that systemic administration of LPS induced
microglia activation as determined by labeling Iba-1-
positive microglial cells and the morphological changes
as measured and assessed using a proportional area
comparison [30, 38]. LPS-induced microglia activation
was supported by elevated expression levels of inflam-
matory markers, such as iNOS and TNF-a. The ob-
served changes associated with LPS-stimulated microglia
activation include (1) an interruption of the CC fibers
linear integrity detected by diffusion tensor magnetic
resonance imaging (DT-MRI), which can map move-
ments of water molecules and image linear integrity of
the white matter tract [29]; (2) a reduction on the mag-
nitude of electrical evoked axonal CAPs, implying for a
functional change of the white matter tracts [17, 33];
and (3) an accumulation of B-APP (which travels along
axons through fast axon transportation), a well-accepted
marker for white matter tracts injury [39, 40]. These al-
terations were partially rescued or significantly reversed
by administration of minocycline. Besides, we analyzed
the expression levels of myelin basic protein (MBP) and

neurofilament (NF) by immunostaining and found no
significant change on MBP and slight reduction of
NF, suggesting that degeneration or demyelination of
nerve fibers was not ensued in the time course
adopted in this study.

How systemically administered LPS enters the brain is
not fully understood. A study using radiocarbon-labeled
LPS to examine how the LPS passes the blood-brain bar-
rier (BBB) demonstrated that binding to LPS receptors
on the endothelium membrane is probably the predom-
inant pathway through which the LPS enters the brain
parenchyma [35]. The LPS might bind to endothelial
CD14 (cluster of differentiation 14) and/or Toll-like re-
ceptors (TLR) 4 and 2 to cross the BBB, as expression
levels of endothelial CD14 mRNAs were upregulated
shortly after LPS injection and overexpression of TLR
mRNAs lasted for a longer time [35]. Epithelial cells of
the choroid plexus also express CD14, and their mRNAs
in the epithelium were significantly elevated for a much
longer time than in BBB endothelium following system
LPS treatment [41]. Moreover, a significant increment of
pro-inflammatory immune cells crossing choroid plexus
into the cerebrospinal fluid (CSF) is observed after sys-
tem LPS [42, 43]. These reports imply the first delivery
of LPS might ensue a little amount of LPS into the brain
parenchyma. This implication was supported by experi-
mental results that the concentration of LPS in the brain
parenchyma was only 0.025% of the circulating LPS



Zhang et al. Journal of Neuroinflammation

(2021) 18:100

Page 8 of 11

D

Proportional Area

Fig. 4 Activation of microglia by system LPS, attenuated by
minocycline. a Resting microglia with thin somata and delicate
pseudopodia were observed in the CC of the saline group as shown
in the inset. b Majority of lba-1-positive microglia in LPS-treated CC
were hyper-ramified with hypertrophic somata or showing amoeba-
like morphology as viewed in the inset. ¢ Hypertrophic somata and/
or pseudopodia were also viewed in the minocycline co-injected
group (see the inset); whereas, amoeba-like microglia was almost
vanished. d Statistical processing of proportional area data displays
that system LPS has highly significantly expanded proportional area
(N = 3 in both saline and LPS groups; p < 0.01, shown as *¥), while
minocycline significantly reversed proportional area values
compared to that in the LPS group (N = 6 in LPS + minocycline

10.0+

7 .54 _

5.0 =
= —

254 | —

0-0 L e %l * L} (\e

N N
50\\ \,? \?% cﬂo

W

cases; p < 0.05, shown as *). Scale bars in a—c are 50 um

following a single injection of doses from 0.1 to 5 mg/kg
[36]. In addition, the first cytokine released into the cir-
culation after stimulation of the immune system with
LPS was TNF-a [44], suggesting that TNF-a might be
the first pro-inflammatory cytokine entering the brain
from the circulation following systemic LPS. However, a
study in rats using isotope-labeled TNF-a to monitor
the rate of its crossing the BBB in both physiological
condition and systemic LPS unveiled no significant
change in up-taking rate for isotope-labeled TNF-a be-
tween 4 and 24 h after administration (i.p.) of LPS [45].
TNF receptors 1 and 2 on BBB endothelium transport
TNF-a crossing BBB whenever the BBB is intact [46, 47]
and their mRNA expression levels in the endothelium
were upregulated following LPS treatment, but their re-
ceptor proteins exhibited no significant increase [45].
This paradox may explain why no significant change in
up-taking rate for isotope-labeled TNF-a was detected
after administration (i.p.) of LPS [45].

In light of the aforementioned studies, we assume that
(1) the first LPS injection might prime resident microglia
through a limited amount of LPS and TNF-a entrance
into the brain from circulation. The microglia in the CC
immediately adjacent to the ventricles might be activated
in an earlier time fashion, considering the pro-
inflammatory monocytes, granulocytes, and lymphocytes
in the CSF are significantly increased [42, 43]. (2) The
second injection of LPS might activate most of the
microglia and the third delivery further challenged
microglia, leading to the production of a significant
amount of pro-inflammatory cytokines including TNF-a,
as reflected by our western blot results. (3) Microglia
were eventually agitated to become neurotoxic because
upregulated iNOS expression, as revealed by our western
blot results, is a sign of detrimental microglia activation
[48, 49]. In this case, the observed malfunction of the
white matter tract was most likely due to activated
microglia since our proportional area measurement of
Iba-1 immunoreactivity [30] displayed a positive correl-
ation between microglia activation and severity of white
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matter malfunction. The direct adverse effect of LPS
and/or circulating TNF-a on white matter tract, if any,
could be ignorable.

It has been shown that systemic administration of
LPS and overactivated microglia affected both grey
matter in the hippocampus and white matter in the
CC, with a prolonged adverse effect on the CC [33].
The mechanism underlying such a difference is still
unclear. Based on our recent findings that microglia
pseudopodia directly contact node of Ranvier or
node-like sodium channel clusters on the CC nerve
fibers, it might be possible that activation of microglia
changed the contacting ratio and pattern between
pseudopodia and node-like structures [50]. In
addition, a large CC area abutting to CSF in the
ventricles may facilitate interaction between pro-
inflammatory substances in the CSF and the microglia
on the CC border [42, 43]. Nevertheless, the present
in vivo studies demonstrated that activation of micro-
glia had a noxious effect in the CC. Such an effect
might be ensued as a significant increment of iNOS,
an established sign for detrimental microglia activa-
tion [48, 49]. In parallel, malfunction of the CC nerve
fibers was reflected by interruption of fiber bundle
linear integrity as detected by DT-MIR, reduction of
CC nerve fibers CAP magnitude, and accumulation
(decelerated transportation) of B-APP through axons
in the CC.

Conclusions

Systemic administration of LPS induced microglia
activation in the CC of rats, resulting in morphological
and physiological alterations that were ameliorated or
reverted by minocycline, a well-characterized anti-
inflammatory agent. As white matter injury has been
detected in Alzheimer’s disease [51-53], Parkinson’s
disease [54, 55], and HIV-associated dementia [56—58],
the LPS-induced microglia activation and resultant white
matter abnormalities may represent an exemplary
mechanism for the pathogenesis of neurodegenerative
disorders. Thus, the amelioration or revert of activated
microglia-induced white matter abnormalities by mino-
cycline implies a therapeutic potential for the aforemen-
tioned neurological diseases.
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