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Abstract

Background: Hypoxic—ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortal-
ity or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE
and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits
anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39
through inhibition of inflammation post-hypoxic—ischemic (HI) injury and to elaborate the contribution of sirtuin
1(SIRT1)/peroxisome proliferator-activated receptor-y coactivator 1a (PGC-1a)/nuclear factor, erythroid 2 like 2(Nrf2) in
G-protein-coupled receptor 39 (GPR39)-mediated protection.

Methods: A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was
administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and
PGC-1a CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-
term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE.

Results: The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1a and Nrf2 were increased in a time-
dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent
infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment signifi-
cantly increased the expression of SIRT1, PGC-1a and Nrf2, but downregulated the expressions of IL-6, IL-1(3, and TNF-
a. GPR39 CRISPR EX527 and PGC-1a CRISPR abolished GPR39's neuroprotective effects post-HIE.

Conclusions: TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1a/Nrf2 pathway in a neonatal rat
model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.
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developing countries [4, 5]. The established standard
of treatment for HIE is therapeutic hypothermia, but it
can only provide limited neuroprotection [6]. In recent
years, researchers have focused on finding new thera-
pies to improve efficiency, enhance neuroprotection,
and reduce side effects. For example, some peptides,
activated by severe anoxic injury, might be involved
in perinatal HIE’s pathophysiology and could be the
potential therapeutic target for HIE.

As one of HIE pathophysiology’s main events, inflam-
matory responses take place within minutes post-HIE
injury and mediate secondary neuronal death [7, 8]. The
activation of neuroglial cells promotes the release of a
large number of pro-inflammatory cytokines and reactive
oxygen species (ROS), thereby leading to neuronal apop-
tosis. On the other hand, emerging evidence has demon-
strated that inflammatory responses also play a beneficial
role, and anti-inflammation is also one of the present
neuroprotective agents’ main mechanisms. Activated
microglia/macrophages can induce phagocytosis and the
production of anti-inflammatory cytokines, which inhib-
its neuroinflammation and protects remaining viable
neurons from death [9-12].

G-protein-coupled receptor 39 (GPR39), a plasma
membrane G-protein-coupled receptor, was first cloned
and identified in 1997 [13]. GPR39 is expressed in the
gastrointestinal tract, amygdala, hippocampus, and
auditory cortex, and zinc was thought to be a natu-
ral ligand of GPR39 [14, 15]. Activation of GPR39 and
related subsequent signaling cascade has been identi-
fied in several cells and shown to regulate a vast array of
physiological functions, such as proliferation, differen-
tiation, ion transport and tight junction formation [16].
Moreover, activation of GPR39 has been demonstrated
to promote wound healing, ameliorate symptoms of
inflammatory bowel diseases, dampen epileptic seizure
activity, reduce anxiety-like behaviors and regulate insu-
lin secretion and malignant progression of several can-
cers [17-24]. Recently, accumulating in vitro evidence
demonstrated that GPR39 exhibits anti-inflammatory
activity by reducing the expression of pro-inflammatory
cytokines (IL-1B, IL-6), enhancing anti-inflammatory
cytokines production (IL-10), ameliorating oxidative
stress and mitochondrial dysfunction [25-27].

A small amount of literature confirms that GPR39
might play a neuroprotective role in neuronal injury by
inhibiting apoptosis and ameliorating endoplasmic retic-
ulum stress [28—30]. However, whether GPR39 activation
has protective and anti-inflammatory effects post-HIE
remains unexplained. In the present study, we hypothe-
sized that GPR39 agonist, TC-G 1008, attenuates inflam-
mation via sirtuin 1(SIRT1)/PPARG coactivator 1 alpha
(PGC-1a)/nuclear factor, erythroid 2 like 2(Nrf2), leading
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to improvement of neurological function in a rat model
of neonatal HIE.

Materials and methods

Animals and model

In this study, all experimental protocols were approved
by the Institutional Animal Care and Use Committee of
Loma Linda University. All studies were performed in
accordance with the United States Public Health Service’s
Policy on Humane Care and Use of Laboratory Ani-
mals. Litters of Sprague Dawley rats, containing 12 pups
and their mothers, were purchased from Envigo (Liver-
more, CA). A total of 206 10-day-old (P10) pups with
body weights ranging from 16 to 23 g were used in this
experimental study (Additional file 1: Fig. S1). The animal
model used in this study is the Modified Rice Vannucci
neonatal hypoxia—ischemia (HI) model [31]. Briefly, 3%
isoflurane was used to anesthetize rat pups, and 2.5%
isoflurane was used for maintenance during surgery. A
small lateral incision (approximately 3—5 mm in length)
was made to the right of the midline, across the sagittal
plane. The upper and lower edges of the isolated right
common carotid (CCA) artery were ligated with 5-0 silk
thread and severed between the ligatures. All operations
were completed within 10 min. However, for pups in the
sham group we only isolated the right CCA. Pups were
allowed to recover for an hour on a heated blanket, fol-
lowing which they were placed in an airtight jar partially
immersed in a 37 °C constant temperature water bath,
and exposed for 2.5 h to a gas mixture of 8% oxygen and
92% nitrogen. Pups in the sham group only got their CCA
isolated without ligation and severance, and without
undergoing hypoxia exposure.

Experimental design

Experiment 1

To explore the time course expression levels of endog-
enous GPR39, SIRT1, PGC-la and Nrf2 post-HIE,
six time points (6 h, 12 h, 24 h, 48 h, 72 h, 7 days) were
selected. The right (ipsilateral) brain samples were sepa-
rate for protein extraction.

Experiment 2

To assess the neuroprotective effect of TC-G 1008 on
pups post-HIE, three doses of TC-G 1008 were used.
The groups included sham, HIE +vehicle, HIE+TC-G
1008(5 mg/kg), HIE+TC-G 1008 (15 mg/kg),
HIE+ TC-G 1008(45 mg/kg). TC-G 1008, suspended in
1% Tween in H,0O, was administered intranasally at 1 h
following HIE. Righting reflex, negative geotaxis tests
and body weights were conducted at 48-h post-HIE. Rats
were then killed and whole brain samples were separated
for TTC staining or immunofluorescence staining.
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Fig. 1 Temporal expression of GPR39/SIRT1/PGC-1a/Nrf2 in the brain post-HIE. A A representative western blot band of the time course. B-E The
endogenous expression levels of GPR39, SIRT1, PGC-1a and Nrf2 were increased from 12 to 72 h, and peaked at 24 h or 48-h post-HIE. (Data are
represented as mean £ SD; *p < 0.05 vs. sham, n=6/group.)

Experiment 3

Long-term effects of TC-G 1008 treatment on neuro-
logical function was evaluated by neurobehavioral tests
including foot-fault, rotarod test and water maze. Sham
group, HIE+vehicle group and HIE+4TC-G 1008
group (15 mg/kg) were included in the analysis. TC-G
1008 was administered at 1 h, 25 h, 49 h, and 73 h post-
HIE. After the neurobehavioral tests were completed,
rats were killed and whole brain samples were removed
for Nissl staining.

Experiment 4

To analyze whether GPR39 receptor and signaling
pathway-related proteins, SIRT1 and PGC-1«, partici-
pate in the underlying mechanism of TC-G 1008-medi-
ated anti-neuroinflammation effects, CRISPR was used
to inhibit GPR39 and PGC-1a, and EX527 was used to
inhibit SIRT1. Rat pups were randomly divided into 8
groups, sham, HIE + vehicle, HIE +TC-G 1008 group,
HIE+TC-G 1008 +control CRISPR, HIE+TC-G
1008 + GPR39 CRISPR, HIE+4TC-G 1008 +PGC-1l«
CRISPR, HIE+TC-G 1008+ EX527. TC-G 1008

(optimal dose) or DDH,O were administered intrana-
sally at 1 h following HIE induction. GPR39 CRISPR,
control CRISPR or PGC-la CRISPR (1 pg/pup) was
given intracerebroventricularly at 48 h before HIE
induction. EX527 (10 mg/kg) or DMSO was injected
intraperitoneally at 1 h before HIE induction. Right-
ing reflex, negative geotaxis tests, TTC staining, body
weight, and immunofluorescence staining were con-
ducted at 48-h post-HIE.

Drug administration

TC-G 1008 (5, 15, 45 mg/kg, Tocris Bioscience, USA)
was administered intranasally [32]. A total of 6 pl of
TC-G 1008 or DDH,O was given every 2 min in alter-
nating nares. EX527 (10 mg/kg, abcam, USA), or DMSO
was injected intraperitoneally at 1 h before HIE. GPR39
CRISPR (Santa Cruz Biotechnology, USA), PGC-la
CRISPR (Santa Cruz Biotechnology, USA), or control
CRISPR (Santa Cruz Biotechnology, USA) were given
intracerebroventricularly (1.5 mm anterior, 1.5 mm lat-
eral to the Bregma, and 1.7 mm deep on the ipsilateral
hemisphere) at 48 h before HIE induction.
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Fig. 2 Effect of intranasal administration of TC-G 1008 on brain infarct are, short-term neurological function and body weight at 48-h post-HIE.
(A-B) TTC staining showed that low (5 mg/kg) and medium (15 mg/kg) doses of TC-G 1008 significantly reduced infarct area when compared with
vehicle. C-D Righting reflex and geotaxis reflex showed that middle dose (15 mg/kg) of TC-G 1008 significantly improved neurological function
compared to vehicle animals. E TC-G 1008 significantly reduced HIE-induced body weight loss of rat pups. (Data are represented as mean £ SD;

Neurobehavioral tests

Following the principle of double-blind, neurobehavio-
ral tests were performed by two investigators in an unbi-
ased setup at either 48 h or 4 weeks post-HIE. Short-term
behavioral tests include righting reflex and negative geo-
taxis were performed at 48-h post-HIE, while long-term
behavioral tests rotarod, water maze, and foot-fault were
performed at 4 weeks post-HIE.

In negative geotaxis test, pups were placed head down-
ward on a 45-degree sloping board. The time from plac-
ing pups on the board to when pups rotated their bodies
to head upward position was recorded. The maximum
testing time was 1 min. In righting reflex test, the time
from a back position that they were initially placed on to
pups turning on all fours was recorded.

In foot-fault, rats were placed to walk on a horizontal
grid floor (square size 20-40 cm with a mesh size of 4
cm?) elevated 1 m above ground for 1 min. The number

of misplaced forelimbs or hindlimbs were recorded by
video equipment (iponhe 6 s, USA).

In rotarod test, rats were placed on a rotating, hori-
zontal, constant speed or accelerating rod (Columbus
Instruments Rotamex, USA). The duration of rats on the
rotarod was recorded by video equipment.

Morris water maze test was used to assess learning,
memory, and visual ability on days 24-28 post-HIE. A
hidden platform was set up by submerging it in a pool
of water. Rats were trained to find the platform using
visual cues around the room in both cued tests and hid-
den tests. If the rats could not reach the platform within
1 min, they would be manually guided to the platform.
The probe experiment was scheduled on the 5th day after
training and the platform was removed. The length of
time it took the rats to reach the platform and the swim-
ming distance of rats were tracked with the Video Track-
ing System SMART-2000 (San Diego Instruments Inc.,
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USA). Subsequently, the distance, latency, and probe
quadrant duration were quantified and analyzed.

Infarct area measurements

Rat pups were anesthetized and euthanized at 48-h
post-HIE. Brains were isolated, cut into 2-mm slices and
stained with 2% solution of 2,3,5 triphenyltetrazolium
chloride (TTC) (Sigma Aldrich, USA). Image ] software
(NIH) was used to analyze and calculate the infarct area.
The percentage of infarct area=(contralateral hemi-
sphere — nonlesioned ipsilateral hemisphere)/2 x con-
tralateral hemisphere] x 100% [33].

Western blot

The expression levels of GPR39, SIRT1, PGC-la and
Nrf2 were measured at O h, 6 h, 12 h, 24 h, 48 h, 72 h and
7 days post-HIE by Western blot following the manufac-
turer’s recommendations [34, 35]. To analyze whether
GPR39 receptor and SIRT1/PGC-1a/Nrf2 pathway were
involved in the neuroprotective effects of TC-G 1008, the
expression levels of GPR39, SIRT1, PGC-1la and Nrf2,

and pivotal inflammatory cytokines IL-6, IL-13, TNF-a
were assessed via Western blot. RIPA lysis buffer (Santa
Cruz Biotechnology, USA) was used to obtain whole cell
lysates. Primary antibodies used were rabbit anti-GPR39
(1:500, Bioss), mouse anti-SIRT1 (1:2000, Abcam), rab-
bit anti-PGC-la (1:1000, Abcam), rabbit anti-Nrf2
(1:1000, Abcam), rabbit anti-interleukin (IL)-1f (1:1000,
Abcam), rabbit anti-interleukin (IL)-6 (1:1000, Abcam),
mouse anti-TNF-a(1:500, Abcam) and mouse anti-p-
actin(1:3000, Santa Cruz). The next day, the anti-rabbit
(or anti-mouse) secondary antibodies (1:3000, Santa
Cruz Biotechnology, USA) were incubated at room tem-
perature for 1-2 h. The gray values were quantified and
analyzed by Image J software (NIH).

Histological analysis

Rats were deeply anesthetized and perfused with cold
PBS solution followed by 4% formaldehyde solution
through the heart at 48 h or 28 days post-HIE. The brains
were isolated and post-fixed with 10% formalin (24 h),
then transferred into 20% sucrose solution, followed by
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30% sucrose solution for dehydration. The brains were
sliced into 10-pm slices for immunofluorescence stain-
ing, or 20 um for Nissl’s staining.

Immunofluorescence staining

Immunofluorescence staining was conducted as
described previously [36]. The 10-pm-thick brain slices
were incubated with rabbit anti-GPR39 (1:50, Bioss),
rabbit anti-interleukin (IL) -1p (1:100, Abcam), mouse
anti-myeloperoxidase (MPO) (1:100, Abcam).The second
day, the brain slices were incubated with the appropriate
fluorescence-conjugated secondary antibodies (1:200) in
the dark at room temperature. The stained sections were
then visualized with a fluorescence microscope (Leica
DMi8, Leica Microsystems, Germany), and photomicro-
graphs of double-fluorescence labeling were merged to
observe the expression of GPR39 on oligodendrocytes,

and the staining positive cells of IL-1f and MPO were
counted.

Nissl staining

The 20-um-thick brain slices were immersed in the fol-
lowing solutions, 95% ethanol for 2 min, 70% ethanol for
2 min, distilled water for 30 s, 0.5% cresyl violet (Sigma-
Aldrich, USA) for 2 min, distilled water for 30 s, 100%
ethanol and xylene for 1.5 min twice. Subsequently, the
brain slices were mounted with DPX (Sigma-Aldrich,
USA). The image of the brain slice was obtained by
microscope (Olympus-BX51) equipped with Magna-
Fire SP 2.1B. Brain tissue loss was calculated with Image
] software (NIH) and 3 brain slices in each brain were
included in the analysis. The percentage of brain tissue
loss = [(contralateral hemisphere — ipsilateral hemi-
sphere)/contralateral hemisphere] x 100% [37, 38].
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Results

1. Time course expression levels of endogenous GPR39,
SIRT1, PGC-1a and Nrf2 post-HIE

The endogenous expression levels of GPR39 recep-
tor and pathway-related protein SIRT1, PGC-1a and
Nrf2 were measured at six time points post-HIE.
Compared with the sham group, GPR39, SIRTI,
PGC-1a and Nrf2 were markedly increased from 12
to 72 h and peaked at 24 h or 48-h post-HIE (Fig. 1).
2. TC-G 1008 treatment reduced the percent infarcted
area and improved short-term neurological function
at 48-h post-HIE
To investigate the neuroprotective effects of
TC-G1008 treatment, three doses, low (5 mg/kg),
medium (15 mg/kg), and high (45 mg/kg), were
tested. From the TTC results, low and medium doses
of TC-G 1008 showed to significantly reduce the

percent infarcted area compared to vehicle group
(Fig. 2A, B). The high-dose group did not show sig-
nificant improvement compared to the vehicle group.
In addition, medium dose of TC-G 1008 significantly
reduced HIE-induced body weight loss of rat pups
(Fig. 2E). Negative geotaxis test showed that medium
dose of TC-G 1008 significantly relieved neurologi-
cal deficits caused by hypoxia ischemia (Fig. 2C).
However, same effect of TC-G 1008 treatment was
not observed in the righting reflex (Fig. 2D). In our
experiment, no unusual behavior was observed in
pups post-administration of TC-G1008. Thus, these
results implied that 15 mg/kg of TC-G1008 showed
a more effective neuroprotective effect and was
selected for further experiments.

3. Immunofluorescence staining showed the colocaliza-
tion of GPR39 with microglia at 48-h post-HIE
Double immunofluorescence staining of GPR39
receptor and Iba-1 (a marker for microglia) was car-
ried out in the sham, vehicle and TC-G 1008 treat-
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ment group at 48-h post-HIE. As shown in Fig. 3,
GPR39 was colocalized with microglia and the
expression level of GPR39 on microglia was up-reg-
ulated in the vehicle group when compared with the
sham group. Moreover, TC-G 1008 treatment further
enhanced the expression of GPR39 on microglia.
TC-G 1008 improved long-term neurological func-
tion and reduced brain atrophy at 4 weeks post-HIE
Foot-fault, rotarod and water maze tests were per-
formed to evaluate the effects of TC-G 1008 treat-
ment on the long-term neurological functions post-
HIE.

In the water maze test, compared with the control
group, vehicle-treated animals were observed to
spend more time and swim longer distances to find
the platform, and less time in the platform quadrant.
However, TC-G 1008 treatment relieved cognitive
impairment, and improved memory and learning
abilities compared with vehicle animals, as showed
by the significantly shorter time it took for rats to
find the platform (Fig. 4B), shorter swimming dis-
tance (Fig. 4A), and more time spent in the platform
quadrant (Fig. 4C).

Vehicle animals performed markedly worse com-
pared with sham animals in foot-fault test, and TC-G
1008 treatment group showed to significantly reduce
the total foot-faults and contralateral foot-faults
when compared with the rats in the vehicle group
(Fig. 4F). Furthermore, TC-G 1008 treatment sig-
nificantly increased the falling latency at both 5 rpm
and 10 rpm acceleration compared to vehicle in the
rotarod test (Fig. 4G).

The brain atrophy was evaluated by Nissl staining at
4 weeks post-HIE. The vehicle group displayed severe
brain damage caused by HIE, characterized by brain
tissue loss in ipsilateral hemisphere. It was signifi-
cantly attenuated post-TC-G 1008 treatment when
compared with vehicle group (Fig. 4E, H).

. In vivo inhibition of GPR39, SIRT1 and PGC-la

abolished TC-G 1008’s neuroprotective effects at
48-h post-HIE

To analyze whether GPR39 receptor and signaling
pathway-related proteins, SIRT1 and PGC-1la, were
involved in the neuroprotective effects of TC-G 1008,
we inhibited GPR39 and PGC-1a using CRISPR, and
SIRT1 with EX527.
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GPR39 CRISPR, PGC-la CRISPR and EX527
reversed the protective effects of TC-G 1008, as
shown from the significant increase in the percent
infarcted area when compared to the correspond-
ing control groups(Fig. 5A, B). Negative geotaxis
and righting reflex tests showed that rat pups treated
with TC-G 1008 in combination with either GPR39
CRISPR, PGC-1a CRISPR or SIRT1 inhibitor EX527
had markedly impaired neurological function com-
pared with corresponding controls (Fig. 5C, D).
Consistently, inhibition of GPR39, PGC-la and
SIRT1 abolished the effect of TC-G 1008 and signifi-
cantly changed the weight of the animals when com-
pared with corresponding treatment control groups
(Fig. 5E).

Moreover, animal groups treated with GPR39
CRISPR or PGC-1a CRISPR, or EX527 have signifi-

cantly higher intensity levels of MPO and IL-1p than
corresponding treatment control groups at 48 h post-
HIE (Fig. 6).

. In vivo inhibition of GPR39, SIRT1 and PGC-la

abolished the anti-neuroinflammatory effect of
TC-G1008 through the GPR39/SIRT1/PGC-1a/Nrf2
signaling pathway at 48-h post-HIE

Western blot data (Fig. 7A) showed that GPR39
receptor and pathway-related proteins SIRTI,
PGC-1a, Nrf2, and pivotal inflammatory cytokines
IL-6, IL-1B, TNF-a were up-regulated in vehicle
group when compared with sham.TC-G 1008 treat-
ment further increased the expression levels of
GPR39, SIRT1, PGC-la and Nrf2, but decreased
the expression levels of IL-6,IL-13 and TNF-a when
compared with vehicle group. Inhibition of GPR39
significantly decreased GPR39 expression, thereby
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abolishing the neuroprotective effects of TC-G 1008,
resulting in a decrease in SIRT1, PGC-la and Nrf2
expression, and an increase in IL-6, IL-1p and TNF-a
expression.

In order to further explore the role of signaling path-
way proteins in the anti-neuroinflammatory effect
of TC-G 1008, SIRT1 inhibitor EX527 and PGC-la
CRISPR were used.

The results showed that EX527 abolished the effects
of TC-G 1008, resulting in a decrease in PGC-1a and
Nrf2 expression, and an increase in IL-6, IL-1p and
TNF-a expression. Similarly, PGC-1a CRISPR signifi-
cantly decreased PGC-1a expression, thereby abolish-
ing the effects of TC-G 1008, resulting in a decrease
in Nrf2 expression, and an increase in IL-6, IL-1f3 and
TNEF-a expression.

The trend of the western blot results of inflammatory
factors was consistent with the findings of our immuno-
fluorescence staining of IL-13 and MPO.

Discussion

In this study, we aimed at evaluating the anti-inflamma-
tory effects and the potential underlying mechanisms
of GPR39 in a rat model of neonatal HIE. Our findings
demonstrated that (1) the expression of GPR39 and
pathway-related proteins, SIRT1, PGC-1a and Nrf2 were
increased in a time-dependent manner, peaking at 24 h
or 48-h post-HIE. (2) GPR39 was expressed in microglia
at 48-h post-HIE. (3) Intranasal administration of TC-G
1008 (15 mg/kg) reduced the percent infarcted area and
improved short-term and long-term neurological defi-
cits. (4) TC-G 1008 attenuated neuroinflammation in
part via the SIRT1/PGC-1a/Nrf2 pathway in a rat model
of neonatal HIE.

In the central nervous system (CNS), it has been pre-
viously demonstrated that high GPR39 mRNA levels are
present in the amygdala, hippocampus, and auditory cor-
tex [15], with Zn?" identified as the “physiological ago-
nist” of GPR39 [39]. Extracellular Zn?* activates ZnR/
GPR39 receptor, thereby triggering multiple signaling
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pathways including, Gas and Gaq/PLC/IP3 [40]. Previ-
ous studies indicated that a zinc-deficient diet led to the
decreased expression of GPR39, and zinc supplementa-
tion for 4 weeks, significantly abolished the abnormal
expression of GPR39 in the hippocampus [41]. Previous
studies have reported that post-ischemia, neurons mas-
sively release extracellular Zn?* to promote the produc-
tion of pro-inflammatory cytokines [42]. In this study,
we demonstrated that the expression of GPR39 was
increased in a time-dependent manner post-HIE. Thus,
the release of Zn>" from neurons post-HIE may have
led to the up-regulation of GPR39 expression that we
observed.

As a specific agonist of GPR39, TC-G 1008 is widely
used to explore the effect of GPR39 activation [25, 43,
44]. Previous studies have shown that treatment with
TC-G 1008 (100 nM and 1 pM) enhanced keratinocyte
proliferation through an ERK-dependent pathway [45].
Furthermore, TC-G 1008-mediated GPR39 activation
promoted osteoblast differentiation and mineraliza-
tion [43]. In a study where they investigated the effect
of GPR39 on the intestinal barrier function, treatment
with TC-G 1008 (1-10 pM) enhanced tight junction
assembly in intestinal epithelial cells by PLC-CaMKK}f-
AMPK pathways [46]. The expression of GPR39 in
the hippocampus and hippocampal cells (HT-22) was
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upregulated following administration of TC-G 1008 [21,
28]. Advanced glycation end-products reduced GPR39
expression in a dose-dependent manner and TC-G 1008
reversed the effects of AGEs [47]. In this study, GPR39
was upregulated post-TC-G 1008 administration as seen
from our immunofluorescence staining and mechanism
studies, which is consistent with previous studies.

GPR39 plays an important role in wound healing,
depression, inflammatory bowel diseases, alcohol use
disorder, insulin secretion and several cancers [23,
46, 48-52]. However, the neuroprotective function
of GPR39 has been partially confirmed. Studies have
shown that GPR39 overexpression protected cells from
undergoing cell death in a hippocampal cell line, and
revealed its underlying mechanisms involving apopto-
sis and endoplasmic reticulum stress [29]. In another
study, GPR39 exhibited its neuroprotective role by
inhibiting apoptosis and thus protecting hippocampal
neurons (HT-22) from corticosterone-induced injury
[28]. Furthermore, it was observed that the zinc diet-
treated group increased the expression of GPR39 and
BMP protein, and improved cognitive impairment,
while it showed to decrease hippocampal mossy fiber
regenerative sprouting [41]. Therefore, GPR39 has been
proposed as a potential therapeutic target for ischemia/
reperfusion injury and neurodegenerative diseases
[29]. In the present study, low and medium dose of
TC-G 1008 showed to significantly reduce the percent
infarcted area compared to vehicle group (Fig. 2A, B).
In addition, medium dose of TC-G 1008 significantly
reduced HIE-induced body weight loss of rat pups
(Fig. 2E). As shown in rats’ performance in behavio-
ral tests, TC-G 1008 improved long-term neurologi-
cal function (Fig. 4). The behavioral tests were selected
based on the neurological function that was being
assessed. Negative geotaxis was used to evaluate reflex
development, motor skills and vestibular labyrinth, and
cerebellar integration, while righting reflex was used
to reflect the muscle strength and subcortical matura-
tion [53]. The rotarod test was used to assess the motor
coordination of rodents and is especially sensitive in
detecting cerebellar dysfunction [54]. The number of
foot-faults indicates impaired movement correction
and increased reaction time [55]. Morris water maze
test was used to assess learning, memory, and visual
ability. In general, activation of GPR39 with TC-G
1008 reduced the percent infarcted area and improved
short-term and long-term neurological deficits.

Although the underlying mechanism is not completely
understood, inflammation is one of the main contributors
to the pathogenic cascade post-HIE. Hypoxia—ischemia
initiates the inflammatory reaction in the brain paren-
chyma and the peripheral immune system, which
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mediates secondary brain injury and can last for a few
days [7, 8]. Therefore, new agents that target inflam-
mation will open new avenues for therapy of neonatal
hypoxic—ischemic brain injury. GPR39, a recently discov-
ered zinc-sensing receptor, has been proven to have anti-
inflammatory effects in several studies [25-27, 56, 57].
GPR39 mediates synovial inflammation by ameliorat-
ing the expression of pro-inflammatory cytokines such
as IL-Band IL-6 [25]. In the process of GPR39 regulating
the activity of endothelial cells, Zn+is involved in the
regulation of some inflammation-related key molecules
including heme oxygenase-1, selectin L and IL-10 [56].
GPR39 was upregulated in thioglycollate-induced peri-
toneal macrophages and exerted its anti-inflammatory
effects by increasing the production of IL-10 [27]. It has
been shown that treatment with TC-G 1008 abolished
the increased expression of pro-inflammatory cytokines
induced by ox-LDL in the prevention of atherosclerosis
[26]. However, in the process of promoting wound heal-
ing, the activation of GPR39 has the effect of promoting
inflammation by increasing the production of pro-inflam-
matory cytokines IL-6 [57]. In the present study, we first
discovered its anti-inflammatory effect in the brain by
reducing the production of IL-6, IL-1p and TNF-qa, as
showed from the result of immunofluorescence staining
of MPO and IL-1p and western blotting (Figs. 6,7, 8, 9).
Numerous studies have shown that activation of SIRT1
is a neuroprotective agent for ischemic stroke through
several mechanisms [58-61]. TC-G 1008 treatment
mitigated IL-1b-induced inhibition of SIRT1, and the
effect of TC-G 1008 on p53 acetylation and chondrocyte
senescence were abrogated when SIRT1 was silenced
[44]. Previous studies have indicated that PGC-1a was a
major regulator of ROS metabolism and mitochondria
biogenesis, which is closely related to the pathology of
ischemic diseases and neurodegenerative diseases [62].
Several studies focusing on ischemic injury implied that
the expression and activity of PGCl-« are at least par-
tially dependent on SIRT1. Icariin has a neuroprotective
effect in mice subjected to post-MCAO via increasing the
SIRT1 and PGC-1a expression [63]. Ghrelin significantly
attenuates brain damage post-HIE via the GHSR-1la/
AMPK/Sirtl/PGC-1a/UCP2  signaling pathway [64].
Activation of the PGC-1a/Nrf-2/HO-1 signaling pathway
plays a critical role in tannic acid (TA) administration
against traumatic brain injury through reducing oxidative
damage, mitochondrial impairment, and inflammation
[65]. In addition, the expression levels of SIRT1 PGC1-
a and Nrf2 were significantly up-regulated post-HIE [64,
66], which is consistent with the results observed in our
study. The activation of GPR39 increased the expression
of SIRT1, PGC-1a and Nrf2, and reduced the expression
of pro-inflammatory cytokines (Fig. 7), but this effect
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was reversed by GPR39 CRISPR. EX527 and PGC-1«
CRISPR abolished the effects of TC-G 1008, resulting in a
decrease in PGC-1a and Nrf2 expression, and an increase
in IL-6, IL-1p and TNF-a expression. Similar effects have
also been observed in our immunofluorescence stain-
ing experiments of IL-1p and MPO. Therefore, the anti-
inflammatory effect of GPR39 is partly dependent on the
SIRT1/PGC-1a/Nrf2 signaling pathway post-HIE. The
role of other neuroprotective functions and underlying
mechanisms will need to be further investigated.

Conclusions

In conclusion, intranasal administration of TC-G 1008
reduced the percent infarcted area and improved short-
term and long-term neurological deficits post-HIE.
TC-G 1008 attenuated neuroinflammation in part via the
SIRT1/PGC-1a/Nrf2 pathway in a rat model of neonatal
HIE. TC-G 1008 may be a novel therapeutic target for
treatment post-neonatal HIE injury. Activating GPR39
may be a promising therapeutic target to attenuate neu-
roinflammation post-neonatal HIE.
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